Project Icon

owlvit-large-patch14

基于Vision Transformer的零样本目标检测模型

OWL-ViT模型采用CLIP和Vision Transformer架构,实现了零样本文本条件目标检测。它可以根据文本查询识别图像中的物体,无需预先定义类别。该模型在大规模图像-文本数据集上进行训练,并在COCO和OpenImages等数据集上微调。OWL-ViT为计算机视觉研究提供了新的可能性,尤其在零样本目标检测领域。

clip-vit-base-patch16 - CLIP-ViT:基于Transformers的零样本图像分类模型
GithubHuggingfaceONNXTransformers.js图像分类开源项目文本嵌入模型视觉嵌入
clip-vit-base-patch16是OpenAI CLIP模型的一个变种,专注于零样本图像分类任务。这个模型使用ONNX格式的权重,可与Transformers.js库无缝集成,方便在Web环境中应用。它不仅提供了易用的pipeline API用于图像分类,还支持独立的文本和图像嵌入计算功能。该模型在处理各种图像分析和跨模态任务时,能够在性能和计算效率之间保持良好平衡。
vit_large_patch14_clip_336.openai_ft_in12k_in1k - ViT图像分类与特征提取模型
GithubHuggingfaceImageNet-1kVision TransformerWIT-400M图像分类开源项目模型预训练模型
OpenAI的ViT图像分类模型,利用CLIP在WIT-400M上预训练,并在ImageNet数据集上微调,适合多种视觉任务。其高性能参数为研究与开发提供强大支持,通过示例代码,可轻松实现图像分类与嵌入功能。
vit_large_patch14_clip_336.openai - 通过CLIP模型探索计算机视觉鲁棒性
CLIPGithubHuggingfaceOpenAI偏见开源项目数据集模型计算机视觉
OpenAI开发的CLIP模型通过ViT-L/14 (336x336)架构提高视觉任务的鲁棒性,专注于零样本图像分类,供研究人员深入探索。这个模型针对英语场景,其数据主要源自发达国家的互联网用户,目前不建议用于商用部署,但在学术界具备多学科研究的重要价值。
vit-large-patch16-384 - Vision Transformer大模型,提升高分辨率图像分类表现
GithubHuggingfaceImageNetVision Transformertransformer图像分类开源项目模型深度学习
项目提供了预训练于ImageNet-21k并在ImageNet 2012上微调的Vision Transformer(ViT)大模型。ViT通过将图像分为固定大小的补丁并使用Transformer编码器进行解析,提升了分类精度和特征提取能力,支持高分辨率视觉识别任务并兼容PyTorch使用。
vit-base-patch32-384 - Vision Transformer图像分类模型支持大规模数据训练
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer(ViT)是一款图像分类模型,采用Transformer编码器架构,通过将图像分割为固定大小patch进行处理。模型在包含1400万张图像的ImageNet-21k数据集完成预训练,并在ImageNet-1k数据集上进行384x384分辨率的微调。提供预训练权重,可直接应用于图像分类或迁移学习任务。
vit_giant_patch14_dinov2.lvd142m - 基于Vision Transformer的无监督视觉特征提取模型
DINOv2GithubHuggingfaceVision Transformer图像分类图像特征提取开源项目模型自监督学习
该项目介绍了使用DINOv2方法的Vision Transformer(ViT)模型,通过无监督学习在LVD-142M数据集上进行预训练。这一模型适用于图像分类和嵌入,帮助提取稳健的视觉特征以及实现高效的图像识别。ViT模型的参数量为1136.5M和1784.2 GMACs,显现出其出色的性能和灵活性。用户可以在GitHub查看和下载该模型的代码和更多资源。
vit-large-patch32-384 - 基于Transformer架构的大规模图像分类模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一个基于Transformer架构的大型视觉模型,在ImageNet-21k数据集上预训练,并在ImageNet 2012数据集上微调。模型采用图像分块和序列化处理方法,支持384x384分辨率的输入。ViT在多个图像分类基准测试中表现优异,可用于图像分类、特征提取等计算机视觉任务。该模型支持PyTorch框架,适合研究人员和开发者使用。
clip-vit-large-patch14-336 - 大规模视觉语言预训练模型CLIP-ViT-Large
CLIPGithubHuggingfaceViT开源项目模型模型卡片深度学习计算机视觉
CLIP-ViT-Large-Patch14-336是一个基于Vision Transformer架构的视觉语言预训练模型。该模型采用ViT-Large结构,patch大小14x14,输入图像尺寸336x336。它能同时处理图像和文本信息,适用于图像分类、图文检索等多模态任务。虽然训练数据和具体性能未知,但该模型有潜力在视觉语言任务中取得良好表现。
clip-vit-base-patch16 - OpenAI开发的CLIP模型实现零样本图像分类和跨模态理解
CLIPGithubHuggingface人工智能图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉语言模型,结合ViT-B/16和masked self-attention Transformer架构。通过对比学习,实现零样本图像分类和跨模态理解。在多项计算机视觉基准测试中表现优异,但在细粒度分类和对象计数方面存在局限。该模型主要用于研究计算机视觉任务的鲁棒性和泛化能力,不适用于商业部署。
clip-vit-base-patch32 - OpenAI CLIP模型实现零样本图像分类的视觉语言预训练
CLIPGithubHuggingfaceOpenAI图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉语言预训练模型,使用ViT-B/32和Transformer架构分别作为图像和文本编码器。通过对比学习训练,CLIP能实现零样本图像分类等任务,在多项计算机视觉基准测试中表现优异。尽管在细粒度分类和物体计数方面存在局限,CLIP为研究人员提供了探索模型鲁棒性和泛化能力的重要工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号