Project Icon

siglip-base-patch16-256

改进CLIP的多模态预训练模型SigLIP

SigLIP是一个基于CLIP改进的多模态预训练模型。它使用Sigmoid损失函数,在WebLI数据集上以256x256分辨率训练。相比CLIP,SigLIP在小批量和大规模批处理中都表现更好,适用于零样本图像分类和图像-文本检索任务。模型在多个基准测试中超越了CLIP,为图像-文本预训练领域带来了新进展。

CLIP-ViT-bigG-14-laion2B-39B-b160k - CLIP-ViT-bigG-14模型实现高效零样本图像分类与检索
CLIPGithubHuggingfaceLAION-2BViT-bigG/14开源模型开源项目模型零样本图像分类
CLIP-ViT-bigG-14-laion2B-39B-b160k是基于LAION-2B数据集训练的大规模视觉语言模型。该模型在零样本图像分类、图像文本检索等任务中表现出色,在ImageNet-1k测试中实现80.1%的零样本top-1准确率。模型采用ViT-bigG/14架构,由stability.ai提供计算资源支持。虽然适合研究人员探索零样本分类和跨模态学习,但目前不建议直接应用于商业场景。
CLIP-ViT-L-14-DataComp.XL-s13B-b90K - 基于DataComp-1B数据集训练的零样本图像分类器
CLIPDataComp-1BGithubHuggingfaceOpenCLIP多模态模型开源项目模型零样本图像分类
CLIP ViT-L/14是一个基于DataComp-1B大规模数据集训练的多模态模型。在ImageNet-1k上达到79.2%的零样本分类准确率,可用于图像分类、检索等任务。该模型主要面向研究社区,旨在促进对零样本和任意图像分类的探索。由stability.ai提供计算资源支持,不建议直接用于部署或商业用途。
CLIP-ViT-B-32-roberta-base-laion2B-s12B-b32k - 零样本图像识别与跨模态检索应用
CLIP ViT-B/32GithubHuggingfaceOpenCLIP图像分类开源项目模型模型评估训练数据
该模型基于OpenCLIP,并利用LAION-5B中的LAION-2B英文子集进行训练,实现了有效的零样本图像分类和跨模态检索。在ImageNet、MSCOCO和Flickr30k测试集上的表现优于基线,适用于图像分类和生成等任务。训练过程中采用32k批次大小处理12B训练样本,并通过VTAB+、COCO和Flickr等数据集进行评估。
OpenAI-CLIP - 从零开始实现CLIP模型:探索文本与图像的多模态关联
CLIPGithubOpenAI图像编码器多模态开源项目文本编码器
本项目实现了CLIP模型,基于PyTorch进行开发,通过训练文本和图像数据,探索其相互关系。详细的代码指南和实用工具展示了模型在自然语言监督任务中的表现和实际应用,适合多模态学习的研究者和开发者使用。
metaclip-b32-400m - 揭秘CLIP数据处理方法的高性能视觉语言模型
GithubHuggingfaceMetaCLIP图像文本匹配开源项目模型自然语言处理计算机视觉零样本图像分类
MetaCLIP-b32-400m是基于CommonCrawl数据集训练的视觉语言模型,旨在解析CLIP的数据准备方法。该模型构建了图像和文本的共享嵌入空间,支持零样本图像分类和基于文本的图像检索等功能。研究人员可通过此模型探究CLIP的数据处理流程,加深对视觉语言模型训练过程的理解。
x-clip - 灵活实现的CLIP视觉语言预训练模型
CLIPGithub多模态对比学习开源项目深度学习视觉语言模型
x-clip是一个简洁而全面的CLIP实现,整合了多项前沿研究成果。该项目支持灵活的模型配置,包括自定义文本和图像编码器、多视图对比学习和视觉自监督学习等功能。通过易用的API,研究人员可以快速实验各种CLIP变体和改进方案。x-clip适用于图像检索、跨模态理解等多种视觉语言任务。
CLIP - CLIP是一种在各种(图像、文本)对上训练的神经网络
CLIPGithubPyTorch图像识别开源项目模型训练自然语言处理
CLIP通过对比学习训练神经网络,结合图像和文本,实现自然语言指令预测。其在ImageNet零样本测试中的表现与ResNet50相当,无需使用原始标注数据。安装便捷,支持多种API,适用于零样本预测和线性探针评估,推动计算机视觉领域发展。
BiomedCLIP-PubMedBERT_256-vit_base_patch16_224 - 基于PubMedBERT的生物医学视觉语言基础模型
BiomedCLIPGithubHuggingfacePubMedBERT图像分类开源项目模型生物医学视觉语言处理
BiomedCLIP是一个生物医学视觉语言基础模型,集成了PubMedBERT和Vision Transformer技术。该模型通过1500万医学图像-文本对的预训练,能够执行跨模态检索和图像分类等任务。在多个标准数据集上,BiomedCLIP显著提升了性能基准。这一模型为生物医学视觉语言处理研究奠定了坚实基础,在放射学等领域具有广泛应用前景。
owlv2-base-patch16-finetuned - 介绍OWLv2模型在零样本物体检测中的应用与发展
CLIPGithubHuggingfaceOWLv2对象检测开源项目模型计算机视觉零样本检测
OWLv2模型是用于零样本物体检测的一个创新模型,使用CLIP作为多模态基础,同时采用ViT型Transformer以提取视觉特征,并通过因果语言模型获取文本特征。此模型的最大特点是其开放词汇分类功能,通过将固定分类层权重替换为文本模型中的类别名称嵌入实现。在常见检测数据集上,CLIP从头训练并微调,以学习精确的对象检测方法。此工具为AI研究人员提供了在计算机视觉领域探索鲁棒性、泛化和其他能力的机会。
DFN2B-CLIP-ViT-B-16 - 自动化数据过滤技术优化对比学习模型
CLIPGithubHuggingfaceOpenCLIPZero-Shot对比学习开源项目数据过滤模型
DFN2B-CLIP-ViT-B-16通过Data Filtering Networks从12.8B对未筛选的数据中选出优质样本,提升CLIP模型训练效果。该模型在ImageNet 1k、CIFAR-10等数据集上表现优异,平均精度为0.609232,支持OpenCLIP,增强了图像与文本匹配能力。特别适合需要提升零样本图像分类准确性的用户。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号