Project Icon

switch-base-128

探索语言模型优化与参数缩放的最新进展

Switch Transformers采用专家混合(MoE)模型架构,针对掩码语言模型(MLM)任务进行训练。该模型使用稀疏多层感知器层取代传统的前馈层,提升了训练效率。在Colossal Clean Crawled Corpus上完成了高达万亿参数的预训练,表现出优于T5的微调效果,并实现了相较于T5-XXL模型的四倍加速,适合需要高效语言模型的应用。

switch-base-8 - 基于专家模型的高效语言模型训练
C4数据集GithubHuggingfaceSwitch TransformersT5屏蔽语言建模开源项目模型混合专家
Switch Transformers是一个创新的专家混合模型,专为在Colossal Clean Crawled Corpus数据集上进行掩码语言建模任务而设计,在训练速度上较T5-XXL模型提升4倍。其架构使用Sparse MLP层替代传统T5模型中的前馈层,提供更快训练且性能优异。该模型在未微调前并不适用于直接应用任务,需进一步调优。Switch Transformers适合需要高效和短时间内取得优异结果的开发者与研究者。
switch-base-32 - 高效稀疏性提升了大规模语言模型训练速度
GithubHuggingfaceMasked Language ModelingSwitch TransformersT5专家模型开源项目模型语言模型
Switch Transformers通过混合专家模型提高了屏蔽语言模型任务的训练速度,相较于T5,其微调任务表现更佳。该模型使用稀疏MLP替代传统前馈层,并在Colossal Clean Crawled Corpus上预训练,实现了4倍训练加速。研究还探讨了其环境影响并提供详细技术细节及源代码链接。
deepseek-moe-16b-base - 采用稀疏混合专家架构的开源大语言模型
DeepSeek MoEGithubHuggingface人工智能代码生成开源项目机器学习模型模型训练
DeepSeek MoE 16B Base是一个基于稀疏混合专家(MoE)架构的开源大语言模型,支持商业应用。模型使用bfloat16格式,可通过Transformers库调用,擅长文本生成和补全。它采用查询-键值对映射的注意力机制,高效处理自然语言处理任务。该项目遵循MIT许可,提供详细文档和示例代码,便于开发者集成使用。
t5-base - 多语言自然语言处理的统一文本转换模型
GithubHuggingfaceT5模型多任务学习开源项目文本到文本转换模型自然语言处理迁移学习
T5-base是一个具有2.2亿参数的语言模型,将NLP任务统一为文本到文本格式。该模型在机器翻译、摘要、问答和分类等任务中表现优异,支持多种语言。T5-base采用创新的预训练方法,结合无监督和有监督任务,在24个NLP任务中进行了评估,为NLP研究和应用提供了强大支持。
DeepSeek-MoE - 创新MoE架构打造高效大规模语言模型
DeepSeekMoEGithubMoE架构大语言模型开源模型开源项目模型评估
DeepSeek-MoE项目开发了创新的混合专家架构语言模型,采用细粒度专家分割和共享专家隔离策略。该16.4B参数模型仅使用40%计算量就达到DeepSeek 7B和LLaMA2 7B的性能水平。模型可在单个40GB内存GPU上直接部署运行,无需量化,为学术和商业研究提供了高效便捷的工具。
DiT-MoE - 16亿参数规模的稀疏化扩散Transformer模型
DiT-MoEGithub图像生成开源项目扩散模型深度学习混合专家
DiT-MoE项目采用混合专家模型,将扩散Transformer扩展至16亿参数规模。作为扩散Transformer的稀疏版本,DiT-MoE在保持与密集网络相当性能的同时,实现了高效的推理。项目提供PyTorch实现、预训练权重和训练/采样代码,并包含专家路由分析和Hugging Face检查点。通过混合专家方法,DiT-MoE在模型扩展和推理优化方面展现出显著优势。
Qwen1.5-MoE-A2.7B - 提高模型生成速度与资源效率的Transformer架构MoE语言模型
GithubHuggingfaceMixture of ExpertsQwen1.5-MoE-A2.7Btransformers开源项目文字生成模型语言模型
Qwen1.5-MoE-A2.7B是一种基于Transformer架构和专家混合(MoE)的大规模预训练语言模型,通过重构密集模型来增强性能。它推理速度提高1.74倍,训练资源仅为类似模型的25%。建议在使用中结合SFT或RLHF等后训练技术,以进一步改进文本生成能力。详细信息及源码可在博客和GitHub仓库中查看。
DeepSeek-V2-Lite - 创新架构驱动的高效混合专家语言模型
DeepSeek-V2GithubHuggingface多头潜在注意力大规模语言模型开源项目模型混合专家模型自然语言处理
DeepSeek-V2-Lite是一款采用创新架构的混合专家(MoE)语言模型。通过多头潜在注意力(MLA)和DeepSeekMoE技术,该模型实现了训练和推理的高效性。模型总参数量为16B,激活参数为2.4B,在多项英文和中文基准测试中表现优异,超越了同类7B密集模型和16B MoE模型。DeepSeek-V2-Lite支持单40G GPU部署和8x80G GPU微调,为自然语言处理研究提供了一个高性能且资源友好的选择。
Arabic-Whisper-CodeSwitching-Edition - 针对阿拉伯语和英语混合语音的优化识别模型
GithubHuggingfacetransformers代码转换开源项目模型语言模型语音识别阿拉伯语
本模型是经过精调的OpenAI Whisper Large v2版本,旨在提升阿拉伯语和英语混合语音的识别精度。基于阿拉伯-英语代码切换数据集训练,适用于处理多语言环境中的阿拉伯语和英语混合语音。虽然在该特定场景中表现优异,但在其它语言或单语言场景中性能可能有所下降。
x-transformers - 轻量级Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种从图像分类到语言模型的应用
Githubtransformerx-transformers开源项目模型训练编码器编解码器
x-transformers提供了多功能的Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种应用,从图像分类到语言模型。其先进技术如闪存注意力和持久内存,有助于提高模型的效率和性能。此项目是研究人员和开发者的理想选择,用于探索和优化机器学习任务中的Transformer技术。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号