Project Icon

tapas-tiny-finetuned-sqa

TAPAS表格问答模型实现多轮对话式表格数据查询

TAPAS-tiny是一个基于BERT的表格问答模型,针对连续简单问题序列进行了优化。模型采用掩码语言建模和中间预训练策略,在SQA数据集上微调,支持相对和绝对位置嵌入。通过弱监督奖励引导搜索训练,有效利用上下文回答表格相关问题。作为轻量级版本,其在开发集上的准确率为23.75%,适用于资源受限的多轮表格问答场景。

tapas-tiny-finetuned-wtq - TAPAS模型为WikiTable问题提供精准问答解决方案
GithubHugging FaceHuggingfaceTAPAS开源项目微调模型表格问答预训练
TAPAS模型经过在WikiTable Questions数据集上的精细调优,提供多种版本以满足不同需求。利用相对和绝对位置嵌入选择,在表格问答任务中表现优异。模型通过掩码语言模型和中间预训练增强数值推理能力,并通过添加单元选择头和聚合头微调SQA、WikiSQL和WTQ数据集以提升问答性能。
tapas-large-finetuned-wtq - TAPAS大型表格问答模型实现精准查询和复杂推理
GithubHuggingfaceTAPASWikiTable Questions开源项目模型深度学习自然语言处理表格问答
TAPAS-large-finetuned-wtq是一个基于TAPAS架构的大型表格问答模型。该模型在WikiTable Questions数据集上微调,采用相对位置编码,支持复杂表格查询和推理。经过MLM和中间预训练,模型在SQA、WikiSQL和WTQ数据集上进行链式微调,在WTQ开发集达到50.97%的准确率。模型能够高效处理与表格相关的复杂问题,提供准确的表格信息提取功能。
tapas-base-finetuned-wtq - TAPAS基础模型在WikiTable Questions数据集上的微调版本
GithubHuggingfaceTAPAS开源项目微调模型自然语言处理表格问答预训练模型
该项目是TAPAS基础模型在WikiTable Questions (WTQ)数据集上的微调版本。模型采用相对位置嵌入,经过掩码语言建模和中间预训练后,通过SQA、WikiSQL和WTQ数据集进行链式微调。在WTQ开发集上,模型达到46.38%的准确率。项目提供两个版本:默认的相对位置嵌入版本和可选的绝对位置嵌入版本,可用于表格相关的问答任务。
tinyroberta-squad2 - 经过蒸馏优化的快速问答模型,运行速度提升一倍
GithubHuggingfacetinyroberta-squad2开源项目数据提取机器学习模型语言模型问答系统
tinyroberta-squad2是一个基于SQuAD 2.0数据集训练的轻量级问答模型。通过知识蒸馏技术,模型在保持原有精确匹配率78.86%和F1分数82.04%的同时,将运行速度提升一倍。模型支持Haystack和Transformers框架,可用于构建文本问答系统。
bert-large-finetuned-squad2 - BERT大规模问答模型的SQuAD2.0优化实现
BERTGithubHuggingfaceSQuAD2.0开源项目机器学习模型自然语言处理问答系统
bert-large-finetuned-squad2基于BERT大规模模型架构,通过SQuAD2.0数据集微调优化,实现了79.7%的F1评分。该模型支持transformers库快速部署,可识别问题是否有答案并提供准确回答。模型采用384序列长度和优化学习参数,在问答任务中展现稳定性能。
bert-mini-finetune-question-detection - BERT-mini模型实现关键词与问题查询的精准分类
BERTGithubHaystackHuggingfaceKaggle开源项目查询分类模型神经搜索
该项目基于BERT-mini开发了一个用于区分关键词查询和问题/陈述查询的模型。在Haystack框架中,该模型实现了99.7%的测试准确率,能够准确将问题路由至Reader分支,提升结果精确度并降低计算开销。模型可通过简洁的Python代码轻松集成,适用于需要高效查询分类的神经搜索系统。
bert-large-uncased-whole-word-masking-finetuned-squad - 全词遮蔽BERT模型在SQuAD数据集上精细调优的大型问答系统
BERTGithubHuggingface开源项目机器学习模型自然语言处理问答系统预训练模型
该项目是一个基于BERT的大型问答模型,采用全词遮蔽技术预训练,并在SQuAD数据集上精细调优。模型架构包含24层Transformer,1024维隐藏层和16个注意力头,总参数量3.36亿。在BookCorpus和英文维基百科上预训练后,可应用于多种问答任务。模型在SQuAD评估中展现出优秀性能,F1分数达93.15,精确匹配分数为86.91。
t5-base-finetuned-question-generation-ap - T5微调模型用于高效问题生成
GithubHuggingfaceSQuADT5开源项目模型自然语言处理迁移学习问题生成
T5-base模型在SQuAD数据集上进行微调,通过整合答案和上下文实现问题生成。项目依托Hugging Face的Transformers库,在Google的支持下,利用迁移学习提升自然语言处理的精确度。支持大规模无标签数据集加载及优化训练脚本,以改善问答生成性能。
distilbert-base-cased-distilled-squad - DistilBERT问答模型 轻量快速接近BERT性能
DistilBERTGithubHuggingfaceSQuAD开源项目模型知识蒸馏自然语言处理问答系统
本模型是DistilBERT-base-cased经SQuAD数据集微调的版本,采用知识蒸馏技术。性能接近BERT,但参数量减少40%,速度提升60%。在SQuAD验证集上F1分数达86.9965,适用于问答任务。支持PyTorch和TensorFlow框架,便于开发者使用。需注意模型可能存在偏见,不宜用于生成事实性内容。
bert-large-cased-whole-word-masking-finetuned-squad - 全词掩码BERT大型模型在SQuAD数据集上优化的问答系统
BERTGithubHuggingface开源项目微调模型自然语言处理问答系统预训练模型
BERT-large-cased-whole-word-masking-finetuned-squad是一个基于全词掩码技术的大型语言模型。该模型包含24层、1024维隐藏层和16个注意力头,共3.36亿参数。在BookCorpus和Wikipedia数据集预训练后,模型在SQuAD数据集上进行了微调,专门用于问答任务。采用双向Transformer架构,通过掩码语言建模和下一句预测任务训练,能有效理解文本语义并回答上下文相关问题。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号