Project Icon

vit-large-patch16-384

Vision Transformer大模型,提升高分辨率图像分类表现

项目提供了预训练于ImageNet-21k并在ImageNet 2012上微调的Vision Transformer(ViT)大模型。ViT通过将图像分为固定大小的补丁并使用Transformer编码器进行解析,提升了分类精度和特征提取能力,支持高分辨率视觉识别任务并兼容PyTorch使用。

clip-vit-base-patch16 - CLIP-ViT:基于Transformers的零样本图像分类模型
GithubHuggingfaceONNXTransformers.js图像分类开源项目文本嵌入模型视觉嵌入
clip-vit-base-patch16是OpenAI CLIP模型的一个变种,专注于零样本图像分类任务。这个模型使用ONNX格式的权重,可与Transformers.js库无缝集成,方便在Web环境中应用。它不仅提供了易用的pipeline API用于图像分类,还支持独立的文本和图像嵌入计算功能。该模型在处理各种图像分析和跨模态任务时,能够在性能和计算效率之间保持良好平衡。
owlvit-large-patch14 - 基于Vision Transformer的零样本目标检测模型
GithubHuggingfaceOWL-ViT多模态模型开源项目模型物体检测视觉变换器零样本学习
OWL-ViT模型采用CLIP和Vision Transformer架构,实现了零样本文本条件目标检测。它可以根据文本查询识别图像中的物体,无需预先定义类别。该模型在大规模图像-文本数据集上进行训练,并在COCO和OpenImages等数据集上微调。OWL-ViT为计算机视觉研究提供了新的可能性,尤其在零样本目标检测领域。
beit_base_patch16_224.in22k_ft_in22k_in1k - BEiT模型:基于ImageNet数据集的高效图像分类与特征提取
BEiTGithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
beit_base_patch16_224.in22k_ft_in22k_in1k是一个强大的图像分类模型,基于BEiT架构设计。该模型在ImageNet-22k数据集上进行自监督掩码图像建模预训练,并在ImageNet-22k和ImageNet-1k上微调,具有8650万个参数。它支持224x224像素的输入图像,可用于图像分类和特征提取,为计算机视觉任务提供高效解决方案。
deit_small_patch16_224.fb_in1k - DeiT架构图像分类模型 基于ImageNet-1k训练的高效Transformer
DeiTGithubHuggingface图像分类开源项目模型深度学习神经网络计算机视觉
DeiT小型模型是一种基于Transformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用注意力蒸馏技术,拥有2210万参数,适用于224x224像素图像输入。除图像分类外,它还可用于特征提取。模型通过timm库提供预训练权重,便于加载和推理。其数据效率和蒸馏技术使其在计算机视觉领域表现出色。
clip-vit-large-patch14 - OpenAI CLIP模型实现零样本图像分类和跨模态匹配
CLIPGithubHuggingface人工智能图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉语言模型,结合ViT-L/14和Transformer架构。通过对比学习,CLIP能够实现零样本图像分类和跨模态匹配。虽然在多项计算机视觉任务中表现优异,但在细粒度分类等方面仍有局限。该模型主要供研究人员探索视觉模型的鲁棒性和泛化能力,不适用于商业部署。CLIP的数据来源广泛,但可能存在偏见,使用时需谨慎评估。
swin-base-patch4-window12-384 - 高效图像分类的Swin Transformer视觉模型
GithubHuggingfaceSwin Transformer图像分类层次特征图开源项目模型自注意力机制视觉转换器
Swin Transformer是一款视觉Transformer,通过使用层级特征图和移窗技术,进行高效图像分类。模型在ImageNet-1k数据集上以384x384分辨率训练,具备线性计算复杂度,使其适用于图像分类和密集识别任务。模型可用于原始图像分类,或者在模型集中寻找细化版本,适合处理计算密集型任务。
ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
beit_base_patch16_384.in22k_ft_in22k_in1k - 高效的BEiT自监督图像分类与嵌入模型
BEiTGithubHuggingfaceImageNet图像分类开源项目模型自监督学习视觉Transformer
BEiT图像分类模型在ImageNet-22k上通过DALL-E dVAE自监督掩码图像建模进行训练,并在ImageNet-22k和ImageNet-1k上进行微调。特点包括易于实现图像分类和生成图像嵌入,具有86.7百万参数,支持384x384图像。模型适合通过timm库高效调用,适用于多种计算机视觉应用。
dino-vits8 - 采用DINO训练的自监督Vision Transformer模型
DINOGithubHuggingfaceVision Transformer图像分类开源项目模型自监督学习预训练
小型Vision Transformer模型使用DINO自监督方法训练,专为ImageNet-1k数据集预训练。模型通过8x8像素的固定大小图像块输入,用于图像表征,无需微调便可用于图像分类任务。ViT模型适合下游任务的特征提取,并可通过线性层进行分类。用户可在Hugging Face上找到适合特定任务的微调版本。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号