Project Icon

sentence_similarity_spanish_es

基于sentence-transformers的西班牙语句子相似度模型

该模型基于sentence-transformers框架开发,能够将西班牙语句子和段落转换为768维向量。主要应用于句子相似度计算、聚类分析和语义搜索等任务。模型在STS基准测试中表现优异,提供简洁的Python接口。它以dccuchile/bert-base-spanish-wwm-cased为基础模型,针对西班牙语自然语言处理进行了优化。

msmarco-distilbert-cos-v5 - 用于语义搜索的句子向量化模型
GithubHuggingfacesentence-transformers嵌入向量开源项目模型模型训练自然语言处理语义搜索
msmarco-distilbert-cos-v5是一个基于sentence-transformers的语义搜索模型。它将文本映射至768维向量空间,基于MS MARCO数据集训练。支持sentence-transformers和HuggingFace Transformers两种使用方式。模型输出标准化嵌入向量,适用于多种相似度计算方法。这一工具可助力开发者构建高效的语义搜索应用。
stsb-xlm-r-multilingual - 基于XLM-RoBERTa的多语言句子嵌入模型
GithubHuggingfacesentence-transformers向量嵌入多语言模型开源项目模型自然语言处理语义相似度
stsb-xlm-r-multilingual是基于XLM-RoBERTa的多语言句子嵌入模型,将句子映射至768维向量空间。该模型适用于聚类、语义搜索等任务,支持跨语言自然语言处理。用户可通过sentence-transformers或HuggingFace Transformers库轻松使用,获取高质量的句子表示。模型在多语言语义相似度基准上表现出色,为多语言NLP应用提供了有力支持。
msmarco-MiniLM-L-12-v3 - 高效语句嵌入模型,适用于语义搜索和文本相似度任务
GithubHuggingfacesentence-transformers向量嵌入开源项目模型特征提取自然语言处理语义相似度
msmarco-MiniLM-L-12-v3是一个sentence-transformers模型,将句子和段落映射到384维密集向量空间。该模型基于BERT架构,使用平均池化,适用于聚类和语义搜索。它可通过sentence-transformers或HuggingFace Transformers库使用,高效生成句子嵌入。这个模型在多个基准测试中表现良好,为自然语言处理应用提供语义表示。
stsb-bert-tiny-onnx - 基于BERT的轻量级文本向量化模型
GithubHuggingfacesentence-transformers开源项目文本嵌入模型模型训练自然语言处理语义相似度
这是一个轻量级的文本向量化模型,基于sentence-transformers框架开发。模型可将文本转换为128维向量表示,主要应用于文本聚类和语义搜索。支持通过sentence-transformers和HuggingFace两种方式调用,提供完整的模型评估数据。
bge-m3-korean - 多语言句子相似度与文本分析模型
GithubHuggingfaceSentence Transformer向量空间多语言开源项目模型特征提取语义相似性
该模型基于BAAI/bge-m3,通过KorSTS和KorNLI进行微调,支持多语言语义相似性分析与文本分类等任务,利用Sentence Transformer将句子和段落映射为1024维稠密向量,适用于多种文本嵌入应用。
German_Semantic_STS_V2 - 德语语义相似度计算模型 实现文本搜索与聚类
BERTGithubHuggingfacesentence-transformers开源项目德语模型模型自然语言处理语义相似度
这是一个专注于德语文本处理的语义模型,能够准确计算文本间的语义相似度。模型在德语基准测试中表现出色,相似度评分达到0.86,优于现有主流方案。主要应用于智能文本搜索、文档聚类等场景,并提供简单的集成方式。
wav2vec2-large-xlsr-53-spanish - 基于XLSR-53微调的西班牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型西班牙语语音识别
此西班牙语语音识别模型基于Facebook的wav2vec2-large-xlsr-53,在Common Voice数据集上微调。模型在测试集上达到8.82%词错误率和2.58%字符错误率,可直接处理16kHz采样的语音输入。项目提供使用示例和评估脚本,便于用户应用和评估。模型采用16kHz采样率,无需额外语言模型即可使用。项目还包含详细的使用说明和评估方法,有助于研究人员和开发者快速集成和测试。
stsb-bert-tiny-safetensors - 轻量级BERT模型用于生成高质量句子嵌入
GithubHuggingfacesentence-transformers向量空间嵌入模型开源项目模型语义搜索语义相似度
stsb-bert-tiny-safetensors是一个基于sentence-transformers的轻量级BERT模型,将句子和段落映射到128维向量空间。它适用于聚类和语义搜索等任务,提供简单API,支持sentence-transformers和HuggingFace Transformers库集成。该模型在STS基准测试中表现良好,能够生成高质量的句子嵌入。
paraphrase-multilingual-mpnet-base-v2 - 跨语言句子向量化模型支持聚类和语义检索
GithubHuggingfacesentence-transformers多语言模型开源项目文本嵌入模型自然语言处理语义搜索
paraphrase-multilingual-mpnet-base-v2是一个基于sentence-transformers的多语言句子嵌入模型,支持50多种语言。它将句子和段落映射为768维向量,适用于聚类和语义搜索。模型易于使用,通过pip安装即可快速集成。在Sentence Embeddings Benchmark上表现出色,采用XLMRobertaModel和平均池化层结构,可有效处理不同长度的文本输入。
wav2vec2-base-finetuned-sentiment-classification-MESD - 基于Wav2Vec2的西班牙语音情感分析模型 准确率达93%
GithubHuggingfacewav2vec2开源项目情感分析机器学习模型西班牙语语音识别
该模型是在MESD数据集上对wav2vec2-base进行微调的西班牙语音情感分析工具。经过约890条专业录音训练,模型在语音情感识别方面达到93.08%的分类准确率。适用于情感推荐系统、智能环境控制和安全监控等领域。模型在专业录音环境下表现优异,但在嘈杂背景和识别恐惧情绪时存在一定局限性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号