Project Icon

SAMed

基于SAM的高效医学图像分割模型

SAMed是一种基于Segment Anything Model的医学图像分割方法,通过低秩适应微调策略优化SAM模型。在Synapse多器官分割数据集上,SAMed达到81.88 DSC和20.64 HD的性能。由于仅更新部分参数,SAMed具有低部署和存储成本的优势。研究团队还推出了性能更高的SAMed_h版本,为医学影像分析提供了新的解决方案。

medpy - 医学图像处理的Python库和工具集
GithubMedPyPython库医学图像处理开源软件开源项目数据分析
MedPy是一个开源的医学图像处理Python库,专注于高维图像处理。它提供丰富的功能和脚本集合,支持PyPI和Conda-Forge安装。MedPy具有完善的文档和教程,适用于Python 3及以上版本。该项目在GitHub上维护,为医学图像处理研究和应用提供了有力支持。MedPy支持医学图像的分割、配准、滤波等多种处理任务,广泛应用于放射学、神经影像学等医学领域。
Segment-Everything-Everywhere-All-At-Once - 基于多模态提示的图像分割模型
GithubSEEM交互式分割图像处理多模态开源项目
SEEM是一种新型图像分割模型,支持多种交互方式如点击、框选、涂鸦、文本和音频提示。该模型可接受任意组合的提示输入,精确分割图像中的目标对象并赋予语义标签。SEEM采用统一架构,具备多模态交互、语义理解和泛化能力,为图像分割任务提供了灵活通用的解决方案。
MedCAT - 从电子健康记录中提取信息并链接到生物医学术语库
GithubMedCATSNOMED-CTUMLS开源项目生物医学本体论电子健康记录
MedCAT是一款用于从电子健康记录(EHR)中提取信息并将其链接到生物医学术语库(如SNOMED-CT和UMLS)的工具。它支持多个模型,包括UMLS小型模型、完整的SNOMED国际模型和荷兰UMLS模型等。用户可以通过UMLS用户认证下载最新的模型包。项目持续更新,新增功能包括医疗文本否定检测和患者时间线深度生成建模。此外,还发布了多篇相关研究论文。安装简单,可选择支持GPU或CPU。
nnDetection - 自适应医学目标检测框架
GithubnnDetection医学目标检测开源项目深度学习自动配置计算机辅助诊断
nnDetection是一个自适应医学目标检测框架,能够自动配置以适应不同医学检测任务。该框架在ADAM和LUNA16等公共基准测试中展现出与顶尖方法相当或更优的性能。项目支持Docker容器和本地安装,提供多个医学数据集的处理指南,便于复现实验结果和集成新数据集。nnDetection为医学目标检测研究提供了标准化接口和自动化工作流程。
AlizaMS - 多功能DICOM查看器 为医学影像分析提供全面支持
3D渲染DICOMGithub医学影像去识别化多平面重建开源项目
AlizaMS是一款功能全面的DICOM查看器,集成2D和3D视图、体积渲染和多平面重建等核心功能。它具备快速目录扫描和DICOMDIR文件处理能力,同时保证DICOM数据的一致性匿名化。该软件支持RTSTRUCT轮廓显示、多视图研究和超声校准区域精确测量。AlizaMS还提供2D+t和3D+t动画效果,内置DICOM元数据查看器和2024b字典。软件兼容多数IOD类型,包括结构化报告和灰度软拷贝呈现状态。
PMC-LLaMA - 开源医疗大语言模型推动医学智能研究
GithubPMC-LLaMA医学问答医疗语言模型开源项目指令微调预训练
PMC-LLaMA是一个基于医学文献预训练和指令微调的开源大语言模型。该模型在USMLE、MedMCQA等医学测试中表现优异,能够有效处理医学问答和相关查询。PMC-LLaMA为研究人员提供了便利的使用和开发平台,促进医学人工智能研究的进展。
clipseg-rd64-refined - 基于文本和图像提示的先进图像分割策略
CLIPSegGithubHuggingface一样本学习图像分割复杂卷积开源项目模型零样本学习
该模型引入先进的复杂卷积技术,支持零样本和单样本图像分割。结合文本与图像提示,该模型在图像分析中提供高效且准确的分割性能。
medspacy - 临床NLP工具库,提供多语言支持和多功能文本处理
GithubmedspaCyspaCy临床文本处理医学NLP开源项目自然语言处理
medspacy是一款基于spaCy框架的临床NLP工具库,提供句子分割、上下文分析、属性识别和章节检测等模块化功能。它适用于临床文本的处理和分析,支持多语言并鼓励扩展更多语言规则。各模块可独立使用,包括概念提取、实体后处理和数据可视化等功能。
diffseg - 基于稳定扩散的零样本图像分割方法
DiffSegGithubStable Diffusion开源项目无监督学习注意力机制零样本分割
DiffSeg是一种利用稳定扩散模型注意力信息的无监督零样本图像分割方法。这个开源项目实现了DiffSeg算法,并提供环境设置指南、运行说明和基准测试。DiffSeg在CoCo-Stuff-27和Cityscapes数据集上表现出色,为计算机视觉领域提供了新的解决方案。特别适合研究无监督学习和零样本学习的专业人士,以及需要高效、灵活图像分割方案的研究人员和开发者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号