Project Icon

bert-classification-tutorial

BERT与Transformers库实现的新闻文本分类项目

这是一个基于BERT模型的现代化文本分类实现项目。项目采用最新的Python、PyTorch和Transformers库,为自然语言处理任务提供了高质量模板。完整流程涵盖数据准备、模型训练和评估,并具有清晰的代码结构和详细说明。虽然主要针对livedoor新闻语料库的分类任务,但也易于适应其他文本分类需求。

transformer-models - MATLAB深度学习变换器模型实现库
BERTGithubMATLABTransformer开源项目深度学习自然语言处理
该项目提供MATLAB环境下的多种深度学习变换器模型实现,包括BERT、FinBERT和GPT-2。支持文本分类、情感分析、掩码标记预测和文本摘要等自然语言处理任务。项目特点包括预训练模型加载、模型微调、详细示例和灵活API,可用于研究和实际应用。
deberta-v3-large-zeroshot-v1 - 强大高效的零样本文本分类能力
DeBERTa-v3GithubHuggingface开源项目文本分类模型模型训练自然语言推理零样本分类
模型适用于零样本分类,通过将文本分类任务转换为'真假'判定任务达到自然语言推理效果。使用Hugging Face pipeline实现,较现有模型表现优异。基于27项任务和310类文本进行训练,专注'Entailment'与'Not_Entailment'的二分类,且在多种文本分类场景中表现灵活。模型为开源,受到MIT许可证保护。
SocialBERT-social - ESG领域社会文本分类的优化语言模型
ESGGithubHuggingfaceSocialBERT人工智能开源项目模型社会文本分类自然语言处理
SocialBERT-social是专注于ESG领域社会文本分类的高效语言模型。通过在SocialBERT-base基础上利用2k社会数据集进行微调,该模型大幅提升了社会文本识别精度。它与Hugging Face pipeline无缝集成,适用于复杂的ESG分析和风险评估任务。项目还提供了详尽的使用指南和相关论文,为研究者和实践者提供了全面的支持。
BERT-Emotions-Classifier - 情感多标签分类的高效工具
BERTGithubHuggingface多标签分类开源项目情感分析情感分类数据集模型
BERT-Emotions-Classifier是一个专注于多标签情感分类的BERT模型,基于sem_eval_2018_task_1数据集训练,能够识别愤怒、恐惧、喜悦等多种情感。适用于社交媒体和客户评论中的情感分析以及基于情感的内容推荐。尽管存在情感类别和输入长度的限制,但该模型在情感分析中表现优异,需注意可能的偏差问题。
politicalBiasBERT - BERT微调模型实现政治倾向文本自动分类
BERTGithubHuggingface开源项目政治偏见文本分类机器学习模型自然语言处理
politicalBiasBERT是一个基于BERT模型微调的政治倾向分析工具。该模型通过大量政治文本训练,能够自动将输入文本分类为左派、中立或右派。研究人员和开发者可使用简单的Python代码调用此模型,快速分析文本的政治倾向。这一工具为政治文本分析和舆情研究提供了有力支持。
deberta-v3-base-zeroshot-v1.1-all-33 - DeBERTa-v3通用零样本分类模型支持387种文本分类场景
DeBERTa-v3GithubHuggingface开源项目文本分类机器学习模型自然语言推理零样本分类
DeBERTa-v3基础模型通过自然语言推理技术实现通用文本分类。经过387个分类任务训练后,可直接应用于情感分析、主题识别、内容审核等场景,平均准确率84%。采用pipeline接口,无需针对新任务重新训练即可使用。
bert-large-cased - 大规模双向Transformer预训练英语语言模型
BERTGithubHuggingface开源项目文本分类模型深度学习自然语言处理预训练模型
bert-large-cased是一个在大规模英语语料库上预训练的Transformer模型,采用掩码语言建模和下一句预测任务。模型包含24层、1024隐藏维度、16个注意力头和3.36亿参数,适用于序列分类、标记分类和问答等下游NLP任务。在SQuAD和MultiNLI等基准测试中表现优异。
hierarchical-bert-model - 层级BERT模型的实现及优化方案
Adam优化器GithubHuggingfaceKeras学习率开源项目模型模型图训练超参数
一个基于Keras框架的层级BERT模型实现,通过优化训练参数提升模型性能。模型采用float32精度训练,集成JIT编译技术,并针对性配置了学习率和优化参数。该模型主要应用于层级文本分类任务。
Pytorch-NLU - 轻量级NLP工具包 支持文本分类和序列标注
GithubPytorch-NLU序列标注开源项目文本分类自然语言处理预训练模型
Pytorch-NLU是一个轻量级自然语言处理工具包,专注于文本分类、序列标注和文本摘要任务。该工具包支持BERT、ERNIE等多种预训练模型,提供多种损失函数,具有依赖少、代码简洁、注释详细、配置灵活等特点。Pytorch-NLU包含丰富的数据集,使用方式简单,可快速应用于实际NLP项目中。
bert-base-uncased - BERT基础版无大小写区分的预训练英语语言模型
BERTGithubHuggingface开源项目文本分类机器学习模型自然语言处理预训练模型
BERT-base-uncased是一个在大规模英语语料上预训练的基础语言模型。该模型不区分大小写,通过掩码语言建模和下一句预测两个目标进行训练,学习了英语的双向语义表示。它可以为序列分类、标记分类、问答等下游任务提供良好的基础,适合进一步微调以适应特定应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号