Project Icon

bert-classification-tutorial

BERT与Transformers库实现的新闻文本分类项目

这是一个基于BERT模型的现代化文本分类实现项目。项目采用最新的Python、PyTorch和Transformers库,为自然语言处理任务提供了高质量模板。完整流程涵盖数据准备、模型训练和评估,并具有清晰的代码结构和详细说明。虽然主要针对livedoor新闻语料库的分类任务,但也易于适应其他文本分类需求。

sentiment_analysis_generic_dataset - BERT微调模型实现精准文本情感分析
BERTGithubHuggingface开源项目情感分析文本分类模型自然语言处理预训练模型
该项目基于BERT预训练模型,专门针对情感分析任务进行微调。模型使用bert-base-uncased作为基础,通过掩码语言建模和下一句预测技术进行预训练,具备理解双向语境的能力。这种预训练方法使模型能为情感分析等下游任务提供有效特征。值得注意的是,此微调版本仅适用于情感分析,不推荐用于其他任务的进一步调整。
bert-base-uncased-finetuned-semeval24 - BERT微调模型在文本分类任务中的出色表现
F1GithubHuggingfacebert-base-uncased准确率开源项目损失模型精调
该微调模型基于google-bert/bert-base-uncased,采用Adam优化器和线性学习率调度策略,经过5个学习周期,在评估集合上取得了0.8254的准确率和0.8237的F1值,适用于需要精确度的文本分类任务。
my_awesome_model - DistilBERT微调的高效文本分类模型
DistilBERTGithubHugging FaceHuggingface开源项目机器学习模型模型微调自然语言处理
my_awesome_model是一个基于distilbert-base-uncased微调的文本分类模型。该模型在未知数据集上训练,经过3轮迭代后,训练损失降至0.0632,验证损失为0.2355,训练准确率达92.95%。模型采用Adam优化器和多项式衰减学习率。虽然缺乏具体任务信息,但其性能表现显示了良好的文本分类潜力。
SecureBERT - 网络安全专用的语言模型,提升文本分析和信息处理能力
GithubHuggingfaceSecureBERT开源项目文本分类模型网络安全语言模型问答
SecureBERT基于RoBERTa构建,是专用于处理网络安全文本的领域特定语言模型。经过海量的网络安全文本训练,它表现出在文本分类、命名实体识别等任务中的卓越性能,并在填空预测上优于模型如RoBERTa和SciBERT,保持对通用英语的良好理解。SecureBERT已在Huggingface平台上线,可作为下游任务的基础模型,以实现更精准的文本分析和处理。
Text-Moderation - 基于Deberta-v3的多分类文本审核系统
AutotrainDeBERTaGithubHuggingface内容分类开源项目文本审核模型自然语言处理
Text-Moderation采用Deberta-v3架构开发的文本分类模型,通过九类标签对文本内容进行审核分类。模型可识别包括性内容、仇恨言论、暴力描述、骚扰行为和自残倾向等敏感信息,并为每个类别提供概率评分。该模型实现了75%的分类准确率,主要支持英语文本的审核工作,可应用于内容审核和文本管理场景。
bert-base-multilingual-uncased - BERT多语言预训练模型支持102种语言的自然语言处理
BERTGithubHuggingface多语言模型开源项目机器学习模型自然语言处理预训练
bert-base-multilingual-uncased是基于102种语言的维基百科数据预训练的BERT模型。它采用掩码语言建模进行自监督学习,可支持多语言自然语言处理任务。该模型不区分大小写,适用于序列分类、标记分类和问答等下游任务。通过在大规模多语言语料库上预训练,模型学习了多语言的双向语义表示,可通过微调适应特定任务需求。
bert-base-uncased-yelp-polarity - BERT模型基于Yelp评论数据集实现高准确率情感分析
GithubHuggingfaceTextAttackbert-base-uncased序列分类开源项目模型模型微调自然语言处理
该项目基于bert-base-uncased模型,利用TextAttack框架和yelp_polarity数据集进行微调,构建了一个文本情感分类器。经过5轮训练,模型在评估集上达到96.99%的准确率。支持最大256的序列长度,专门用于Yelp评论的情感分析。模型采用16的批次大小和5e-05的学习率,展现出优秀的性能表现。
tiny-bert-sst2-distilled - 轻量级BERT文本情感分类模型
BERTGithubHuggingface开源项目数据集微调文本分类机器学习模型模型训练
tiny-bert-sst2-distilled模型通过对BERT基础版本进行蒸馏优化,专注于文本情感分类任务。该模型在SST-2评估集上达到83.26%的准确率,保持了不错的性能表现。模型架构采用2层transformer结构,隐藏层维度为128,具有轻量化特点,适合在计算资源有限的环境中部署使用。
distilbert-base-uncased-ag-news - 使用精简版模型增强新闻文本分类性能
GithubHuggingfaceTextAttackdistilbert-base-uncased交叉熵损失函数准确率序列分类开源项目模型
该项目通过使用TextAttack工具和ag_news数据集对distilbert-base-uncased模型进行微调,提升了文本分类的精确度。模型经过5个周期的训练,采用了32的批量大小、2e-05的学习率和128的最大序列长度。在分类任务中采用了交叉熵损失函数。模型在验证集测试中取得了0.9479的最佳准确度。详见TextAttack的GitHub页面。
domain-classifier - 基于DeBERTa V3的多领域文本分类模型
Deberta V3GithubHuggingfaceNeMo CuratorPyTorch开源项目文本分类模型模型领域分类
这是一个基于DeBERTa V3 Base架构的文本分类模型,可将输入内容自动归类至26个不同领域。模型在超过100万个样本上训练,PR-AUC评分达0.9873。支持最多512个token的长文本输入,可通过NeMo Curator或Hugging Face Transformers库轻松集成使用。适用于各类文本内容的自动化领域分类任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号