Project Icon

Real3D

基于真实图像的大规模3D重建模型

Real3D是一种创新的大规模3D重建模型系统,首次实现了使用单视图真实图像进行训练。该系统采用自训练框架,结合3D/多视图合成数据和单视图真实图像,并引入两种无监督损失函数,实现像素和语义层面的模型监督。在包含真实和合成数据、域内和域外形状的四种评估场景中,Real3D均显著优于现有方法。

3DModelingRL - 深度强化学习在3D建模中的应用与突破
3D建模ECCV 2020GithubPyTorch开源项目强化学习计算机视觉
3DModelingRL项目展示了一种创新的3D建模方法,利用深度强化学习模拟人类建模过程。项目包含Prim-Agent和Mesh-Agent两个核心组件,分别用于生成基于图元的表示和编辑网格。该方法在ECCV 2020会议发表,为3D建模领域开辟新方向。项目提供完整代码、预训练模型和数据集,便于研究者进一步探索和应用。
LL3DA - 3D环境下的多模态语言和视觉互动助手
3D环境3D语言模型GithubLL3DA开源项目点云视觉交互
LL3DA是一种大型语言3D助手,能够在复杂的3D环境中响应视觉和文本交互。现有的多模态模型在3D场景理解中的挑战使得LL3DA采用点云直接作为输入,从而减少计算负担并提升性能。实验结果表明,LL3DA在3D密集描述和3D问答任务上优于其他3D视觉语言模型。其开源代码和预训练模型权重允许用户训练定制模型,并进一步拓展到更大规模的3D视觉语言基准上。
Gaussian-SLAM - 革新性实时3D重建技术,融合高斯散射实现逼真效果
3D重建Gaussian-SLAMGithubSLAM开源项目神经渲染计算机视觉
Gaussian-SLAM是一种创新的3D场景重建技术,将高斯散射与SLAM系统相结合。该技术能够准确映射环境,生成高质量纹理和细节,实现照片级真实的稠密重建效果。Gaussian-SLAM在Replica、TUM_RGBD、ScanNet等多个数据集上展示了优秀性能,为实时3D重建和增强现实应用开辟了新途径,是计算机视觉和机器人领域的重要进展。
Awesome-Text-to-3D - 前沿文本和图像到3D内容生成技术资源集
AI模型Githubtext-to-3D图像生成开源项目深度学习计算机视觉
该项目汇总了文本到3D和图像到3D的前沿生成技术。内容涵盖基于2D先验模型学习3D的方法,以及直接在3D数据上训练的生成模型。资源列表包含DreamFusion、Magic3D、Shap·E等创新方法,展现了从文本或单一图像生成高质量3D内容的最新进展。这为研究人员和开发者提供了探索和应用3D生成技术的重要参考。
LandMark - 先进的大规模3D城市场景重建与渲染技术
GithubGridNeRFLandMark三维重建并行训练开源项目神经辐射场
LandMark是一个基于GridNeRF的大规模3D城市场景重建与渲染系统。通过并行计算、算子优化和算法改进,该系统实现了100平方公里以上城市数据的高效3D神经场景训练,渲染分辨率可达4K。LandMark不仅支持场景布局调整和风格化等功能,还提供了完整的训练、渲染和应用基础设施,为大规模真实世界3D重建开辟了新的可能。
hmr-survey - 单目图像3D人体网格模型重建技术综述
3D人体网格重建Github人体建模单目图像开源项目深度学习计算机视觉
本文综述了单目图像3D人体网格模型重建技术的最新进展。文章详细介绍了基于优化和基于回归两种主要方法,分析其优缺点,并总结相关数据集、评估指标和基准结果。同时讨论了该领域的开放问题和未来方向,为研究人员提供全面的技术概览。
zero123-diffusers - 单图转3D模型的AI技术突破
3D对象GithubHuggingfaceZero-1-to-3人工智能图像生成开源项目模型研究模型
Zero-1-to-3项目展示了AI领域的重要进展,实现从单一2D图像到3D模型的转换。基于Stable Diffusion技术,该项目为研究人员提供了探索大规模模型部署和生成模型特性的新工具。尽管在真实感和文本渲染方面有待改进,但其在计算机视觉和3D建模领域的应用前景广阔。使用时需谨慎,确保符合伦理标准。
ReCon - 融合对比和生成方法的3D表示学习框架
3D表示学习GithubReCon少样本学习开源项目点云分类零样本学习
ReCon是一个融合对比学习和生成式预训练的3D表示学习框架,有效解决了数据不足和表示过拟合问题。该框架在3D点云分类、少样本学习和零样本迁移等任务中表现出色,在ScanObjectNN数据集上达到91.26%的分类准确率。ReCon展现了在3D表示学习领域的先进性能,为相关研究提供了新的思路。
OpenLRM - 开源3D重建模型
GithubHugging FaceOpenLRM开源开源项目模型训练视觉重建
OpenLRM是一个开源项目,专注于将单张图像转换为三维模型,提供预训练模型、训练代码和工具。用户可访问Hugging Face平台上的模型和演示。最新版本v1.1.1支持Objaverse和MVImgNet数据集,并进行了代码重构以提升可用性和扩展性。项目还包含安装指南、推理脚本和训练配置文件,便于用户快速上手。
One-2-3-45 - 2D扩散模型在3D AIGC中的创新应用
3D建模GithubHuggingFaceNeurIPS 2023One-2-3-45开源项目深度学习
One-2-3-45项目创新性地提出了一种2D扩散模型在3D AIGC中的正向操作方法,无需耗时的优化过程。项目提供详细的安装说明和多种演示方式,包括在线互动演示和完整的配置指南。通过整合Hugging Face的Gradio API,用户可以方便地进行图像预处理和3D网格重建。该项目已被NeurIPS 2023接受,并提供了详细的训练代码和数据集,促进单图像到3D模型的快速生成。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号