Project Icon

wav2vec2-xls-r-300m-hebrew

XLS-R微调的希伯来语语音识别模型

该开源项目提供了一个针对希伯来语优化的语音识别模型。基于wav2vec2-xls-r-300m架构,通过两阶段训练方法在私有数据集上进行微调。模型在测试集上实现23.18%的词错误率,展示了特定语言语音识别优化的有效途径。这一模型为希伯来语自动语音识别研究和应用提供了实用工具。

nb-wav2vec2-1b-bokmaal - 基于XLS-R的挪威语Bokmål语音识别模型实现高精度转录
GithubHugging FaceHuggingfaceNPSCWav2Vec2开源项目挪威语模型语音识别
nb-wav2vec2-1b-bokmaal是一个基于XLS-R的挪威语Bokmål语音识别模型,在NPSC测试集上达到6.33%词错误率和2.48%字符错误率。该模型由NbAiLab团队使用挪威议会语音语料库(NPSC)训练,并开源了完整代码和参数配置,便于研究者复现和优化。模型在Hugging Face平台发布,支持挪威语自动语音识别任务。
wav2vec2-conformer-rope-large-960h-ft - Wav2Vec2 Conformer模型在Librispeech数据集上的语音识别应用
ConformerGithubHuggingfaceLibriSpeechWav2Vec2开源项目模型自然语言处理语音识别
这是一个基于Wav2Vec2 Conformer架构的语音识别模型,采用旋转位置嵌入技术,在Librispeech数据集的960小时音频上完成预训练和微调。模型在Librispeech测试集上表现优异,'clean'和'other'子集的词错误率分别为1.96%和3.98%。支持16kHz采样的语音输入,适用于精确的语音转文本任务。
wav2vec2-large-xlsr-53-th-cv8-newmm - 基于wav2vec2的泰语语音识别模型整合CommonVoice V8数据集实现性能突破
GithubHuggingfaceWav2Vec2开源项目机器学习模型模型泰语语音识别语音转文本
这是一个针对泰语的开源语音识别模型,通过微调wav2vec2-large-xlsr-53并整合CommonVoice V8数据集实现。模型采用pythainlp进行预分词,结合语言模型显著提升性能。在CommonVoice V8测试集上,模型实现12.58%的词错率和3.28%的字符错率,较基准模型大幅提升。该项目代表了当前泰语语音识别领域的先进水平。
Hebrew-Gemma-11B-V2 - 多语言处理的希伯来语-英语大规模生成模型
11亿参数GithubHebrew-Gemma-11B-V2Huggingface大语言模型开源项目文本生成模型自然语言处理
Hebrew-Gemma-11B-V2是一个以开源形式发布的大规模语言模型,扩展自Google的Gemma-7B架构。通过增量3B的英语和希伯来语文本数据进行扩展训练。模型专注于多项自然语言处理任务,尤其擅长希伯来语的理解和生成。使用者需遵循Google的使用条款,提供的代码示例可以帮助快速在CPU和GPU上运行,同时支持4位精度量化。
wav2vec2-large-es-voxpopuli - Wav2Vec2大型西班牙语语音识别模型基于VoxPopuli预训练
GithubHuggingfaceVoxPopuliWav2Vec2开源项目模型自动语音识别语音语料库预训练模型
Wav2Vec2-Large-VoxPopuli是一个基于Facebook Wav2Vec2技术的西班牙语语音识别模型。该模型利用VoxPopuli语料库中的无标签西班牙语音频数据进行预训练,能够有效学习语音结构。模型适用于自动语音识别任务,可通过微调提升特定领域性能。采用CC-BY-NC-4.0许可证,为语音处理研究和开发提供了有力工具。
wav2vec2-large-robust-ft-libri-960h - 多领域预训练的大规模语音识别模型
GithubHuggingfaceLibrispeechWav2Vec2开源项目机器学习模型自监督学习语音识别
wav2vec2-large-robust-ft-libri-960h是一个基于Wav2Vec2架构的大规模语音识别模型。该模型在多个领域的音频数据集上进行了预训练,包括Libri-Light、CommonVoice、Switchboard和Fisher,涵盖了有声读物、众包语音和电话交谈等多种音频类型。随后,模型在960小时的Librispeech数据集上进行了微调。这种多领域预训练和目标域微调的方法显著提高了模型在跨领域语音识别任务中的性能。模型支持16kHz采样率的语音输入,适用于需要处理多样化音频数据的应用场景。
nb-wav2vec2-300m-nynorsk - 挪威语新挪威语Wav2Vec2语音识别模型
GithubHuggingfaceNbAiLab/NPSCWav2Vec2开源项目挪威语模型自动语音识别语言模型
nb-wav2vec2-300m-nynorsk是一个针对挪威语新挪威语的Wav2Vec2语音识别模型。该模型基于VoxRex特征提取器,使用NbAiLab/NPSC数据集进行微调,在NPSC测试集上达到了0.1222的词错误率(WER)和0.0419的字符错误率(CER)。作为Robust Speech Event项目的成果之一,模型及其训练代码已开源,为挪威自然语言处理社区提供了进一步改进自动语音识别技术的基础。
dictalm2.0-instruct - 支持对话功能的希伯来语大型语言模型
DictaLM-2.0GithubHuggingface希伯来语开源项目指令微调模型自然语言生成语言模型
通过对DictaLM-2.0模型的指令调优,此项目提升了大型语言模型在希伯来语环境下的指令执行和词汇能力。采用高精度配置和扩展的希伯来语指令数据集,遵循Zephyr-7B-beta的调整方案,专为对话设计,旨在提供流畅的聊天体验。尽管表现出色,但尚未集成内容审核机制,项目期待与社区合作,优化模型在内容监控环境中的应用。
wav2vec2-indonesian-javanese-sundanese - 印尼、爪哇和巽他语的多语言语音识别模型
GithubHuggingfaceWav2Vec2印尼语多语言开源项目模型自动语音识别语音识别
利用优化的Wav2Vec2模型,专注于印尼、爪哇和巽他语的多语言语音识别,数据来自Common Voice和TTS数据集,拥有较低字错误率并提供在线演示,工具无需语言模型,适合16kHz语音输入,帮助研究人员和开发者探索多语言识别技术。
wav2vec2-large-xlsr-bahasa-indonesia - wav2vec2架构的印尼语语音识别模型
Common VoiceGithubHuggingfaceWav2vec2Whisper印尼语开源项目模型语音识别
这是一个开源的印尼语自动语音识别模型,基于wav2vec2-large-xlsr架构。模型使用Common Voice 6.1印尼语数据集训练,测试集词错误率为19.3%。项目提供训练代码仓库和联系方式。值得注意的是,作者已发布新版模型,具有更小体积和更低的5.9% WER。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号