Project Icon

wav2vec2-xls-r-300m-hebrew

XLS-R微调的希伯来语语音识别模型

该开源项目提供了一个针对希伯来语优化的语音识别模型。基于wav2vec2-xls-r-300m架构,通过两阶段训练方法在私有数据集上进行微调。模型在测试集上实现23.18%的词错误率,展示了特定语言语音识别优化的有效途径。这一模型为希伯来语自动语音识别研究和应用提供了实用工具。

data2vec-audio-base-960h - 利用自监督学习提升语音识别效率的开源框架
Data2VecGithubHuggingfaceTransformer开源项目模型自动语音识别自监督学习语言模型
Data2Vec是一种开源模型,基于Librispeech数据集进行960小时的16kHz语音音频的预训练和微调,在语音识别领域表现优异。利用自监督学习与自蒸馏手段,Data2Vec准确提取上下文信息,优化了自动语音识别的表现。在LibriSpeech的测试中,取得了“clean”任务2.77和“other”任务7.08的词错误率(WER),体现了其在业内的竞争力。
alephbert-base - 优化希伯来语自然语言处理的先进语言模型
AlephBERTBERT架构GithubHuggingface希伯来语开源项目模型训练数据语言模型
AlephBERT是一个基于Google BERT架构的希伯来语语言模型。这一模型利用了来自OSCAR、Wikipedia以及Twitter的丰富语料,提升了自然语言处理的表现。训练过程中使用了Masked Language Model损失优化策略,提高了效率和准确性。通过Huggingface的Transformer库,用户能够轻松集成这一模型,满足多种自然语言处理需求。
wavlm-libri-clean-100h-base-plus - WavLM微调模型在LibriSpeech数据集上的语音识别性能
GithubHuggingfaceLibriSpeechWavLM开源项目微调模型自然语言处理语音识别
本模型是基于microsoft/wavlm-base-plus在LibriSpeech ASR - CLEAN数据集上微调而来。经过3个epoch的训练,模型在评估集上达到0.0819的损失和6.83%的词错率。训练过程采用多GPU并行计算,使用Adam优化器和线性学习率调度器。模型的词错率从初始的100%显著降低至约7%,体现了其在语音识别任务上的卓越表现。模型基于Transformers 4.15.0.dev0和PyTorch 1.9.0+cu111框架,在8个GPU上进行分布式训练,并采用了Native AMP混合精度训练技术,有效提高了计算效率。
wav2vec2-base-finetuned-sentiment-classification-MESD - 基于Wav2Vec2的西班牙语音情感分析模型 准确率达93%
GithubHuggingfacewav2vec2开源项目情感分析机器学习模型西班牙语语音识别
该模型是在MESD数据集上对wav2vec2-base进行微调的西班牙语音情感分析工具。经过约890条专业录音训练,模型在语音情感识别方面达到93.08%的分类准确率。适用于情感推荐系统、智能环境控制和安全监控等领域。模型在专业录音环境下表现优异,但在嘈杂背景和识别恐惧情绪时存在一定局限性。
chinese_speech_pretrain - 中文语音预训练模型,wav2vec 2.0和HuBERT的开源实现
GithubHuBERTWenetSpeechwav2vec 2.0中文语音识别开源项目语音预训练模型
chinese_speech_pretrain项目开源了基于WenetSpeech数据集训练的中文语音预训练模型。项目包含wav2vec 2.0和HuBERT的BASE与LARGE版本,均使用1万小时多样化中文语音数据训练。模型在自动语音识别任务中表现优异,尤其适合低资源场景。项目提供模型下载及使用指南,可用于语音识别、语音合成等研究领域。
Chinese-FastSpeech2 - FastSpeech2模型的中文升级
BertProsodyFastSpeech2GithubHifiGAN中文语音合成开源项目韵律模型
Chinese-FastSpeech2项目基于FastSpeech2模型和标贝女声数据改进,引入韵律表征和预测模块增强中文发音的生动度及节奏感。项目提供完整的模型训练、预处理代码,支持交互式与API两种预测方式,并不断更新来优化语音合成服务的自然性。
Whisper-Finetune - 语音识别模型的高效微调与加速
GithubWhisper中文识别加速推理开源项目模型微调语音识别
Whisper-Finetune项目致力于优化OpenAI的Whisper语音识别模型。该项目采用Lora技术进行微调,支持多种数据类型的训练,并通过CTranslate2和GGML实现加速推理。此外,项目提供了跨平台应用和服务器部署方案,为语音识别应用开发提供了全面支持。
metavoice-src - 1.2B参数开源TTS模型,支持情感语音合成和跨语言声音克隆
GithubMetaVoice-1BTTS开源开源项目情感语音语音克隆
MetaVoice-1B是一个开源的1.2B参数TTS模型,经过10万小时的语音训练,支持英语情感语音合成和零样本的美式和英式语音克隆(仅需30秒参考音频)。该模型还支持跨语言声音克隆和任意长度文本的语音合成。可通过云端或本地部署使用,并提供Hugging Face和Google Colab的演示。
Whisper-Finetune - 微调与加速Whisper模型
GithubOpenAIWhisper加速推理开源项目微调语音识别
本项目使用Lora技术微调了OpenAI的Whisper语音识别模型,并支持CTranslate2和GGML加速。模型能够进行无时间戳、有时间戳及无语音数据训练,并支持中文和98种其他语言的语音转文本及翻译。开源了多个适用于不同需求的模型,支持Windows、Android和服务器部署。提供详细的安装教程和使用说明,以及AIShell和WenetSpeech数据的评估和推理速度测试表,方便用户快速上手。
XPhoneBERT - 多语言音素表示模型助力TTS性能提升
GithubXPhoneBERT多语言模型开源项目语音合成音素表示预训练模型
XPhoneBERT是一种创新的多语言音素表示预训练模型,专为文本转语音(TTS)系统设计。基于BERT-base架构,该模型利用RoBERTa方法对近100种语言的3.3亿音素级句子进行训练。研究显示,将XPhoneBERT用作输入音素编码器能够显著增强神经TTS模型的自然度和韵律表现,同时在训练数据有限的情况下也能生成高质量语音。这一模型支持广泛的语言,并可通过transformers库便捷集成。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号