Project Icon

auto-round

针对大语言模型的高效量化算法

AutoRound是一种针对大语言模型(LLM)的高效量化算法。通过符号梯度下降优化权重舍入和范围,仅需200步迭代即可达到业界领先水平,且不增加推理开销。该算法支持OPT、BLOOM、GPT-J等多种模型,提供混合精度量化、激活量化等实验功能,并兼容Intel Gaudi2硬件。AutoRound提供简洁的Python接口,方便用户进行模型量化和推理。

Qwen2.5-14B-Instruct-GGUF - 针对不同硬件环境优化的大模型量化版本
GPU运算GithubHuggingfaceQwen2.5-14B-Instruct人工智能模型开源项目模型模型推理模型量化
Qwen2.5-14B-Instruct模型的量化优化项目,通过F16到Q2_K等多种精度量化方案,将模型体积压缩至5.36GB-29.55GB范围。项目集成了ARM芯片优化版本和创新的I-quant量化技术,实现了模型性能、速度与硬件适配的平衡。量化版本涵盖了从高精度到轻量级的多个选项,方便在不同计算资源条件下部署使用。
LLaMA-Factory - 提升语言模型微调效率的统一平台
GithubLLaMA Factory大语言模型开源项目快速微调性能优化模型量化热门
LLaMA-Factory是一个高效的语言模型微调工具,支持多种模型和算法。该平台专注于提高微调速度,支持连续预训练、监督微调和激励建模等策略。LLaMA-Factory利用LoRA技术实现高效训练,并提供详尽的数据监控和快速推理能力。此外,新版本还增加了PiSSA算法,且支持多种开发平台如Colab和DSW,适合高质量文本生成和智能应用开发。
Meta-Llama-3.1-70B-Instruct-GPTQ-INT4 - INT4量化版提升多语言对话效率
GPTQGithubHuggingfaceMeta-Llama-3.1-70B-Instruct大语言模型开源项目推理模型量化
本项目展示了Meta Llama 3.1 70B Instruct模型的INT4量化版本。通过AutoGPTQ技术,将原FP16模型压缩至INT4精度,在维持性能的同时显著减少内存使用,仅需约35GB显存即可运行。该项目兼容多个推理框架,如Transformers、AutoGPTQ、TGI和vLLM,便于根据不同需求进行选择。项目还附有详细的量化复现指南,方便用户独立完成模型量化过程。
DeepSeek-Coder-V2-Lite-Base-GGUF - 文本生成量化模型的高效选择方案
DeepSeek-Coder-V2-Lite-BaseGithubHuggingfacegguf格式开源项目文件下载模型量化高质量模型
该项目通过llama.cpp和imatrix技术对文本生成模型进行量化处理,为不同硬件配置提供优化选择。模型文件允许根据RAM和VRAM大小选择最佳方案,从而提升运行效率。K-quants在多数应用中表现理想,而I-quants提供更优性能但在硬件兼容性上有特定要求。项目提供的工具和文档为用户在进行文本生成任务的过程中提供指导,帮助选择兼顾速度与质量的量化模型。
llmc - 开源工具压缩大型语言模型提升效率
GithubLLMCLLM压缩剪枝开源项目性能优化量化
llmc是一个压缩大型语言模型的开源工具,采用先进压缩算法提高效率和减小模型体积。它支持多种LLM和压缩方法,可在单GPU上量化评估大模型,兼容多种推理后端。项目提供LLM量化基准,帮助用户选择合适的压缩策略。
OpenHermes-2.5-Mistral-7B-AWQ - 使用AWQ方法提升Transformer推理速度的低位量化技术
AI模型GithubHuggingfaceOpenHermes-2.5-Mistral-7B人机对话合成数据开源项目模型量化
AWQ通过4-bit量化提供高效、快速的Transformer推理体验,与GPTQ相比具有更优性能。它在Text Generation Webui、vLLM、Hugging Face的Text Generation Inference和AutoAWQ等多个平台上支持,为AI应用带来了显著的性能提升,适用于多用户推理服务器的开发以及Python代码中的集成使用。
Awesome-Efficient-LLM - 知识蒸馏、网络剪枝、量化和加速推理等针对大型语言模型优化的关键技术的汇总
GithubLarge Language Models开源项目效率优化模型剪枝知识蒸馏量化
Awesome-Efficient-LLM项目汇总了针对大型语言模型优化的关键技术,包括知识蒸馏、网络剪枝、量化和加速推理等,支持研究者和开发者获取最新的效率提升方法和学术文献。该平台定期更新,提供过去60天内的相关研究成果,便于用户系统地探索和应用这些高效技术。
aimet - 深度学习模型优化的量化与压缩工具
AIMETGithubPyTorch开源项目模型压缩模型量化深度学习
AI Model Efficiency Toolkit (AIMET) 提供先进的模型量化和压缩技术,专注于优化已训练的神经网络模型。其主要功能包括跨层均衡、偏差校正、自适应舍入和量化感知训练,显著提升模型运行性能,降低计算和内存要求,并保持任务精度。AIMET 兼容 PyTorch、TensorFlow 和 ONNX 模型,通过 AIMET Model Zoo 提供优化的8位推理神经网络模型。同时,AIMET 支持空间SVD和通道剪枝等压缩技术,并提供可视化工具检查模型量化和压缩效果。
AutoCompressors - 创新语言模型技术实现长文本上下文压缩
AutoCompressorGithubLlama上下文压缩开源项目生成式AI语言模型
AutoCompressors是一项创新语言模型技术,可将长文本上下文压缩为少量摘要向量并进行推理。该项目提供官方实现,包含预训练模型、安装指南和示例代码。支持Llama-2和OPT等基础模型,有效提升长文本处理能力,为自然语言处理开辟新途径。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号