Project Icon

yoloair

YOLOAir2024版:综合模型改进教程与源码库

YOLOAir2024版发布,提供多模型支持及改进教程,包括YOLOv5、YOLOv7、YOLOv8等。通过统一框架和模块化实现模型多样化应用,如目标检测、实例分割、图像分类等,适用于科研与实际应用。免费提供源代码。

JSON2YOLO - COCO到YOLO格式转换工具 提升目标检测效率
COCO2YOLOGithubUltralytics开源项目数据集转换机器学习目标检测
JSON2YOLO是一个开源数据集转换工具,专注于将COCO格式JSON数据转换为YOLO格式。这款跨平台工具支持Linux、MacOS和Windows,为机器学习实践者简化了数据处理流程。它不仅优化了数据转换过程,还能提升目标检测模型的训练效率。项目源码可在GitHub获取,用户也可加入Discord社区交流。
a-PyTorch-Tutorial-to-Object-Detection - PyTorch物体检测模型教程与实现
GithubPyTorch单发多框检测卷积神经网络多尺度特征图对象检测开源项目
本教程详细指导如何使用PyTorch实现物体检测模型,包括模型构建、训练、评估和推理等环节。采用高效的单次多框检测(SSD)算法,介绍多尺度特征图、先验框和非极大值抑制等关键概念。适合具备PyTorch和卷积神经网络基础的学习者,教程提供中文翻译版便于理解和应用。
yolov9-face-detection - YOLOv9在WIDER Face数据集上的人脸检测实现
GithubWIDER Face数据集YOLOv9人脸检测开源项目深度学习计算机视觉
这个开源项目展示了如何利用YOLOv9模型在WIDER Face数据集上实现高精度人脸检测。项目提供了完整的工作流程,包括安装指南、预训练模型、数据准备、训练和推理方法。同时还包含数据集转换脚本和配置文件,方便研究者和开发者快速上手并应用于实际场景。
yolov5-deepsort-tensorrt - 基于YOLOv5和DeepSORT的Jetson设备目标跟踪系统
DeepSortGithubJetsonTensorRTYolov5开源项目目标跟踪
这个项目是YOLOv5和DeepSORT算法在Jetson设备上的C++实现,针对Jetson Xavier NX和Jetson Nano进行了优化。系统能够高效跟踪多个人头目标,在Jetson Xavier NX上处理70多个目标时可达到10 FPS。项目包含环境配置、模型生成和运行指南,支持自定义模型,并提供了不同YOLOv5版本的兼容性说明。适合需要在边缘设备上进行高性能目标跟踪的应用场景。
notebooks - 使用 SOTA 计算机视觉模型和技术的示例和教程
DETRGPT-4 VisionGithubRoboflowYOLO开源项目计算机视觉
提供详尽的计算机视觉教程,包括ResNet、YOLO、DETR等经典模型,以及最新的Grounding DINO、SAM和GPT-4 Vision技术。这个资源库适合初学者和专家学习最前沿的计算机视觉方法和应用。
semantic-segmentation - 提供丰富数据集和易于定制的语义分割模型
GithubPyTorchSOTASemantic Segmentation开源项目数据集模型库
该项目提供易于使用和定制的SOTA语义分割模型,支持多种任务和数据集。适合高精度和定制应用场景,涵盖场景解析、人类解析、人脸解析等任务。特点包括多种主干网络和分割模型,支持PyTorch、ONNX、TFLite等框架的推理和导出。即将迎来重大更新,包括新的训练流程、预训练模型、教程和分布式训练支持。用户可通过详细文档和示例轻松使用并配置定制数据集,实现高效的语义分割。
yolov5n-license-plate - 基于YOLOv5的轻量级车牌检测模型
GithubHuggingfacePyTorchYOLOv5开源项目机器视觉模型目标检测车牌识别
基于YOLOv5架构开发的轻量级车牌检测模型,通过pip快速安装部署。模型支持自定义参数配置,包括置信度阈值和IoU阈值调节,并集成了数据增强功能。提供完整的模型加载、推理和微调接口,可用于实际车牌检测场景,在验证集上展现出较高的检测精度。
deep_sort_pytorch - 使用PyTorch实现的Deep Sort多目标追踪算法
Deep SortGithubMask RCNNPyTorchYOLOv3YOLOv5开源项目
本项目实现了基于PyTorch的Deep Sort多目标追踪算法,结合CNN模型进行特征提取,并采用YOLOv3和YOLOv5等先进检测器代替原始的FasterRCNN。项目还支持多GPU训练和多类别目标追踪,并引入了Mask RCNN实例分割模型。用户可以使用Python和PyTorch轻松启动和自定义项目,适用于行人再识别等任务。详细的更新日志和使用指南使其对机器学习及计算机视觉爱好者和研究人员尤为有用。
Deep-Learning-for-Tracking-and-Detection - 使用深度学习进行对象检测和跟踪的论文与资源合集
GithubRCNNYOLOdeep learningmulti object trackingobject detection开源项目
本项目汇集了有关深度学习在对象检测和跟踪领域的论文、数据集、代码及各种资源。内容涵盖静态检测、视频检测、多对象跟踪和单对象跟踪等主题,并提供了多种经典模型如RCNN、YOLO、SSD的实现和改进方案。此外,项目还涵盖了图像和视频分割、光流、运动预测等任务的资源,为研究人员和开发者提供了详尽的参考资料。
YOLOv8-TensorRT-CPP - 用C++和TensorRT实现高效的YOLOv8模型推理
CPPGithubTensorRTYOLOv8开源项目深度学习目标检测
本文介绍了如何使用TensorRT的C++ API实现YOLOv8模型的推理,支持目标检测、语义分割和身体姿态估计,包括系统要求、安装步骤、模型转换和项目构建方法。内容中强调了在GPU上运行推理的注意事项和性能基准测试,提供了从PyTorch到ONNX模型转换的详细步骤,是开发计算机视觉应用的参考资料。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号