Project Icon

DeepLagrangianFluids

拉格朗日流体模拟的连续卷积神经网络方法

DeepLagrangianFluids项目实现了基于连续卷积的粒子流体模拟网络,源于ICLR 2020会议发表的研究成果。项目包含数据生成、模型训练和预训练模型运行的完整代码,支持PyTorch和TensorFlow框架,并集成Open3D等库实现高效模拟与可视化。这种新方法在流体动力学模拟的准确性和计算效率方面取得了显著进展。

CVPR2023-DMVFN - 动态多尺度体素流网络在视频预测领域的应用
CVPR2023GithubSOTA模型动态多尺度体素流网络开源项目数据集视频预测
本项目介绍了一种在视频预测领域的新模型——动态多尺度体素流网络。该模型由CVPR2023收录并成为亮点,通过对Cityscapes、KITTI及DAVIS等多个数据集的训练和测试,展示了其在视频预测中的表现。项目页面包括详细的安装、数据准备、训练和测试步骤,并提供丰富的可视化结果和资源链接,支持预训练模型的下载以便实际应用。
liquid_time_constant_networks - Liquid Time-Constant Networks (LTC) 的代码库
BPTTGithubLiquid time-constant NetworksTensorFlowcontinuous-time modelspython3开源项目
本项目提供了Liquid time-constant Networks等连续时间模型的官方训练资源。支持使用TensorFlow和Python进行模型训练与评估,适用于手势分割、房间占用检测、交通量预测等多种数据集。通过详细的步骤和参数设置指导,科研人员和开发者可以优化并存储训练结果,深入探索连续时间模型的应用。
flow-forecast - 开源时间序列深度学习框架,支持最新模型和云端集成
Flow ForecastGithubtransformer开源开源项目时间序列预测深度学习
Flow Forecast 是一个开源时间序列预测深度学习框架,提供最新的Transformer、注意力模型、GRU等技术,并具有易于理解的解释指标、云集成和模型服务功能。该框架是首个支持Transformer模型的时间序列框架,适用于流量预测、分类和异常检测。
Real-Time-Latent-Consistency-Model - 实时潜在一致性模型,支持多种图像转换管道
CUDAControlNetDiffusersGithubLatent Consistency ModelLoRA开源项目
此项目展示了使用Diffusers进行图像转换的实时潜在一致性模型(LCM),支持img2img、txt2img、ControlNet等多种管道。需要CUDA和Python 3.10等环境支持,提供详细的安装指南和使用示例。LCM + LoRAs可以在极少步骤内完成推理,加快处理速度。项目支持Docker部署,并提供不同平台的实时演示链接。
bayesian-flow-networks - 将贝叶斯方法与流网络相结合的生成模型新框架
Bayesian Flow NetworksGithub开源项目机器学习概率模型深度学习生成模型
Bayesian Flow Networks是一个结合贝叶斯方法和流网络的生成模型框架。项目提供完整代码实现,包含连续和离散数据的贝叶斯流定义,以及连续时间和离散时间的损失函数。支持MNIST、CIFAR-10和text8等数据集的训练、测试和采样。此框架在图像和文本生成任务中表现出色,为生成模型研究开辟新方向。
DiffEqFlux.jl - 将微分方程与机器学习结合的Julia科学计算库
DiffEqFlux.jlGithub开源项目微分方程机器学习神经网络科学机器学习
DiffEqFlux.jl是一个Julia库,旨在将微分方程与机器学习相结合。该项目基于DifferentialEquations.jl和Lux.jl,主要用于科学机器学习研究,尤其是神经微分方程领域。DiffEqFlux.jl提供了多种神经网络层,包括神经常微分方程、神经随机微分方程等,并支持高阶、自适应、隐式和GPU加速等计算方法。这个库为研究人员和开发者提供了一个探索连续时间机器学习模型的工具。
PyFR - 开源Python流体动力学框架 适用多种硬件平台
GithubPyFRPython框架开源软件开源项目数值计算流体动力学
PyFR是基于Python的开源流体动力学框架,主要解决对流-扩散问题。它使用Huynh通量重构方法,支持混合非结构网格上的多种控制系统求解。借助内置领域特定语言,PyFR能针对不同硬件平台优化性能。该项目欢迎社区贡献,并为用户提供全面的文档和测试案例。PyFR适用于需要进行高性能流体动力学模拟的科研和工程领域。
deepxde - 科学计算与物理学习的深度学习库
DeepXDEGithub开源项目深度学习库物理信息学习神经网络科学机器学习
DeepXDE 是一个为科学计算和物理引导学习设计的深度学习库。它支持解决多种复杂问题,如常微分方程、偏微分方程、分数阶微分方程和随机微分方程等。DeepXDE 支持多个后端,包括 TensorFlow、PyTorch、JAX 和 PaddlePaddle,提供丰富的几何域、边界条件、自动微分和采样方法。其模块化设计允许用户自定义和扩展模块,适用于科研和工业应用。
diffusion-forcing - 创新机器学习方法结合下一步预测和全序列扩散技术
Diffusion ForcingGithub开源项目模型训练深度学习视频预测迷宫规划
Diffusion Forcing是一种结合下一步预测和全序列扩散技术的机器学习方法。该项目为视频预测、迷宫规划和时间序列分析等任务提供了框架。通过时间注意力机制,Diffusion Forcing可生成长序列预测并在复杂环境中进行规划。该方法在Minecraft和DMLab视频数据集以及迷宫规划任务中表现优异。项目包含使用说明和预训练模型,便于研究者快速上手和复现结果。
denoising-diffusion-pytorch - 生成模型新方法:Pytorch中的Denoising Diffusion
Denoising Diffusion Probabilistic ModelGithubLangevin采样Pytorch开源项目扩散模型生成建模
Denoising Diffusion Probabilistic Model在Pytorch中的实现,通过去噪得分匹配估计数据分布梯度,并使用Langevin采样生成样本。这种方法可能成为GANs的有力竞争者。项目支持多GPU训练,提供详细的安装和使用指南,是研究人员和开发者的高效工具,支持1D序列数据和图像数据的生成和训练。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号