Project Icon

Open3D-PointNet2-Semantic3D

使用Open3D和PointNet++进行高效3D数据处理与语义分割

该项目演示了如何使用Open3D与PointNet++进行3D点云的加载、预处理及语义分割,提供了高效的点云操作方法和训练预测流程,为Semantic3D数据集提供了简洁优化的基准实现,适用于深度学习应用的快速开发。

Mesh_Segmentation - 3D网格分割与特征提取技术发展概览
Githubmesh processing分割开源项目深度学习特征提取计算机图形学
本项目整理了3D网格分割和特征提取领域的重要研究进展,涵盖2019年至2024年间的创新技术,如变形自动编码器、窗口变换器和图卷积网络等。同时收录了相关数据集、课程资源和关键论文,为该领域研究人员提供全面参考,促进3D网格处理技术的发展。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
GET3D - 从2D图像生成高质量3D纹理模型的新突破
3D生成模型GET3DGithub图像学习开源项目生成对抗网络纹理网格
GET3D是一种新型生成模型,可从2D图像集合中学习生成高质量3D纹理网格模型。该模型融合了可微表面建模、可微渲染和生成对抗网络技术,能直接生成具有复杂拓扑结构和丰富几何细节的3D模型。GET3D可生成包括汽车、椅子、动物、摩托车、人物和建筑在内的多种3D模型,在质量上显著超越现有方法,为大规模创建3D虚拟世界内容提供了有力工具。
pytorch3d - 基于PyTorch的高效3D计算机视觉研究库
3D计算机视觉GithubPyTorch3D三角网格可微分渲染开源项目深度学习
PyTorch3D是一个基于PyTorch的3D计算机视觉研究库,提供高效、可复用的组件。主要功能包括三角网格操作、可微分渲染和隐式表示框架。该库与深度学习方法无缝集成,支持异构数据批处理、可微分运算和GPU加速。PyTorch3D已应用于多个研究项目,并提供全面的教程和文档。
Segment-Any-Point-Cloud - 视觉基础模型驱动的通用点云序列分割框架
GithubSeal开源项目点云分割神经网络自监督学习计算机视觉
Seal是一种自监督学习框架,通过利用视觉基础模型的知识来分割多样化的点云序列。该框架在表示学习阶段强调空间和时间一致性,实现了高效的跨模态知识迁移。Seal无需依赖2D或3D标注,直接从视觉模型中提取知识,展现出优秀的可扩展性、一致性和泛化能力。它可应用于各类点云数据集,包括真实与合成、高低分辨率、大小规模以及干净和受损数据。
LL3DA - 3D环境下的多模态语言和视觉互动助手
3D环境3D语言模型GithubLL3DA开源项目点云视觉交互
LL3DA是一种大型语言3D助手,能够在复杂的3D环境中响应视觉和文本交互。现有的多模态模型在3D场景理解中的挑战使得LL3DA采用点云直接作为输入,从而减少计算负担并提升性能。实验结果表明,LL3DA在3D密集描述和3D问答任务上优于其他3D视觉语言模型。其开源代码和预训练模型权重允许用户训练定制模型,并进一步拓展到更大规模的3D视觉语言基准上。
hierarchical-3d-gaussians - 层次化3D高斯表示实现大规模场景实时渲染
3D高斯表示Github大规模数据集实时渲染层次结构开源项目点云
这个项目开发了一种层次化3D高斯表示方法,能够实时渲染大规模数据集。通过分层优化和合并策略,该方法高效地表示和渲染复杂场景。项目包含预处理、优化和实时查看器等步骤,可处理含数千图像的大型数据集。代码库提供完整实现和使用说明,涵盖环境配置、数据准备和训练流程。
ULIP - 多模态预训练框架实现3D数据理解
3D理解GithubULIP多模态预训练开源项目点云分类零样本分类
ULIP是一种多模态预训练框架,集成了语言、图像和点云数据以增强3D理解能力。该框架适用于多种3D骨干网络,如Pointnet2和PointBERT等,无需增加处理延迟。ULIP-2在此基础上进行了扩展,提高了预训练的可扩展性。项目开源了预训练模型、数据集和使用指南,为3D数据分析奠定了基础。
2dimageto3dmodel - 创新损失函数实现单图2D到3D模型生成
3D模型生成GANGithub单图重建开源项目损失函数点云
该项目开发了一种新型损失函数,能够直接从单张2D图像生成3D模型,无需复杂的渲染过程。项目采用条件GAN架构实现纹理映射,并优化了点云到3D网格的转换技术。在CUB鸟类和Pascal 3D+数据集上的测试显示了显著效果。此外,项目还提供预训练模型、伪真值生成和网格生成器训练等功能,为3D重建研究领域贡献了实用工具和参考方法。
Far3D - 突破远距离3D目标检测的新框架,提升环视感知能力
3D目标检测Far3DGithub开源项目深度学习自动驾驶计算机视觉
这是一个创新的稀疏查询框架,专注于解决远距离3D目标检测问题。该项目通过2D目标先验生成自适应3D查询,并利用透视感知聚合模块处理多视角和多尺度特征。还开发了范围调制的3D去噪技术,有效解决了查询错误传播和收敛问题。在Argoverse 2和nuScenes数据集上,展现出优异的性能,推动了环视3D目标检测技术的发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号