Project Icon

Open3D-PointNet2-Semantic3D

使用Open3D和PointNet++进行高效3D数据处理与语义分割

该项目演示了如何使用Open3D与PointNet++进行3D点云的加载、预处理及语义分割,提供了高效的点云操作方法和训练预测流程,为Semantic3D数据集提供了简洁优化的基准实现,适用于深度学习应用的快速开发。

Det3D - 提供多数据集和算法支持的3D目标检测工具箱
3D对象检测Det3DGithubKITTIPointPillarsPyTorch开源项目
Det3D是一款基于PyTorch的3D目标检测工具箱,支持多个数据集如KITTI、nuScenes、Lyft,并实现了多种3D目标检测算法如PointPillars、SECOND、PIXOR等。其特点包括高性能、支持分布式训练和同步批归一化,以及灵活的模型配置和可视化工具。Det3D适合自动驾驶、机器人和增强现实等领域的研究人员和开发者。
ESANet - 高效RGB-D语义分割网络用于室内场景分析
ESANetGithubRGB-D实时处理室内场景分析开源项目语义分割
ESANet是一个高效的RGB-D语义分割网络,专为室内场景分析设计。该网络在NVIDIA Jetson AGX Xavier上实现实时语义分割,适用于移动机器人的实时场景分析系统。项目提供训练和评估代码,支持模型转换至ONNX和TensorRT,并可测量推理时间。ESANet在NYUv2、SUNRGB-D和Cityscapes等数据集上展现出优异性能。
openscene - 零样本3D场景理解和任务执行工具
3D场景理解CVPR 2023GithubOpenScene开源项目语义分割零样本
OpenScene是一个实时交互的3D场景理解工具,支持使用开放词汇进行查询。用户可输入任意短语,系统会自动高亮相应区域。支持多种数据集和预处理选项,可执行零样本3D语义分割、稀有物体搜索和基于图像的3D物体检测。其特点包括无需GPU运行、支持多视角特征融合和模型蒸馏。所有代码和数据集均可在GitHub获取,适用于广泛的研究和开发应用。
Mask3D - 改进3D语义实例分割方法,兼容多种数据集
3D实例分割GithubICRA 2023Mask3DPyTorchScanNet开源项目
Mask3D是一个提升3D语义实例分割的开源项目,支持ScanNet、ScanNet200、S3DIS和STPLS3D数据集。项目集成了PyTorch、PyTorch Lightning和Hydra工具,提供高效的架构和训练流程,包括数据预处理、模型训练与测试。此外,Mask3D在多个挑战中表现优异,包括在ECCV 2022的Urban3D挑战中获得第二名。
Real3D - 基于真实图像的大规模3D重建模型
3D重建GithubReal3D开源项目深度学习自监督学习计算机视觉
Real3D是一种创新的大规模3D重建模型系统,首次实现了使用单视图真实图像进行训练。该系统采用自训练框架,结合3D/多视图合成数据和单视图真实图像,并引入两种无监督损失函数,实现像素和语义层面的模型监督。在包含真实和合成数据、域内和域外形状的四种评估场景中,Real3D均显著优于现有方法。
patchwork-plusplus - 基于3D点云的高效地面分割算法Patchwork++
3D感知GithubPatchwork++地面分割开源项目机器人技术点云处理
Patchwork++是Patchwork算法的改进版,专注于3D点云地面分割。该算法具有快速、稳健和自适应特性,有效解决了欠分割问题。项目提供C++、Python和ROS2支持,适用于多种开发环境。凭借在多个数据集上的出色表现,Patchwork++成为自动驾驶和机器人导航领域的重要工具。
superpoint_transformer - 高效3D场景语义和全景分割的超点变换器
3D全景分割3D语义分割GithubICCV 2023SuperClusterSuperpoint Transformer开源项目
Superpoint Transformer 是一种超点 transformer 架构,适用于大规模 3D 场景的语义分割。通过自注意机制和层次化超点结构,它能多尺度挖掘超点间关系,性能卓越。同时,SuperCluster 将全景分割任务转化为超点图聚类任务,能在单个 GPU 上处理大规模场景。项目亮点包括显著的SOTA表现、快速训练和预处理等。点击查看更多详情及项目更新。
SegmentAnythingin3D - NeRF模型的三维目标分割框架SA3D
3D分割GithubNeRFSA3DSAM开源项目计算机视觉
SA3D是一个创新的三维目标分割框架,基于神经辐射场(NeRF)模型。它允许用户通过单一视图的手动提示,快速获取目标对象的3D分割结果。SA3D支持点提示和文本提示输入,处理时间约为2分钟。该框架在建筑、室内场景和复杂物体等多种应用场景中展现了良好的适应性,为3D场景感知和虚拟现实内容创作提供了新的可能。项目还包含直观的图形界面,便于研究人员和开发者进行快速实验和应用开发。
mmdetection3d - 支持多模态单模态的开源3D目标检测框架
3D目标检测GithubMMDetection3D开源工具箱开源项目点云处理计算机视觉
MMDetection3D是OpenMMLab项目开发的开源3D目标检测框架,基于PyTorch构建。它支持多模态和单模态检测器,适用于室内外3D检测数据集,可与2D检测无缝集成。该框架提供300多种预训练模型、40多种算法实现,以及MMDetection全部功能模块。MMDetection3D不仅可用于研究,还可作为库支持各类3D检测应用开发。
pix2pix3D - 基于2D标签图的3D感知条件图像生成模型
3D生成模型Githubpix2pix3D开源项目条件图像合成神经辐射场语义标签
pix2pix3D是一个3D感知条件生成模型,可以根据2D标签图(如分割图或边缘图)生成逼真的3D对象图像。该模型结合神经辐射场技术,能从多个视角渲染图像。通过同步生成图像和对应的标签图,pix2pix3D实现了交互式3D编辑功能,为可控的3D感知图像合成开辟了新途径。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号