Project Icon

bert-base-uncased-conll2003

基于BERT的CoNLL-2003数据集命名实体识别模型

此模型是基于bert-base-uncased在CoNLL-2003数据集上微调的命名实体识别模型。经过2轮训练,模型在测试集上展现出优秀性能:精确率达0.8885,召回率为0.9046,F1分数为0.8965,准确率高达0.9781。模型采用Adam优化器和线性学习率调度器,为NLP领域提供了一个高效的命名实体识别解决方案。

bert-large-uncased-whole-word-masking - BERT大型无大小写全词掩码预训练模型
BERTGithubHuggingface人工智能开源项目模型深度学习自然语言处理预训练模型
BERT-large-uncased-whole-word-masking是一个采用全词掩码技术的大型预训练语言模型。该模型基于BookCorpus和英文维基百科数据集进行自监督学习,具有24层结构、1024维隐藏层和3.36亿参数。它在序列分类、标记分类和问答等需要理解整句上下文的任务中表现优异,为自然语言处理应用提供了强大的英语语言表示能力。
ner-english-ontonotes - Flair框架英语命名实体识别模型支持18类实体
FlairGithubHuggingface命名实体识别序列标注开源项目机器学习模型自然语言处理
这是一个基于Flair框架的英语命名实体识别模型,能够识别18种实体类型,包括人名、地点和组织等。模型采用Flair embeddings和LSTM-CRF架构,在Ontonotes数据集上的F1分数为89.27%。该模型可应用于多种自然语言处理任务,并且可以通过简单的Python代码实现NER预测。
deberta-v3-base - 高效预训练语言模型提升自然语言理解任务性能
DeBERTaGithubHuggingface开源项目文本分类模型深度学习自然语言处理预训练模型
DeBERTa-v3-base是一种改进的预训练语言模型,采用ELECTRA风格预训练和梯度解耦嵌入共享技术。该模型在SQuAD 2.0和MNLI等自然语言理解任务上表现优异,超越了RoBERTa等基准模型。它具有12层结构、768维隐藏层、86M骨干参数和128K词表。研究人员可通过Hugging Face Transformers库对其进行微调,应用于多种自然语言处理任务。
biomedical-ner-all - 基于英语的生物医学实体识别AI模型
AIGithubHuggingfaceMaccrobatNamed Entity Recognitiontransformers库开源项目模型生物医学
该AI模型基于Maccrobat数据集训练,可以识别107种生物医学实体,适用于案例报告等文本工作。通过distilbert-base-uncased构建,拥有低碳排放(0.0279千克)和30.17分钟的训练时间。通过Huggingface API或transformers库,可便捷应用于生物医学领域;教程视频提供详细使用说明。
gliner_base - 灵活的命名实体识别模型,适用各种场景
BERTGLiNERGithubHuggingface命名实体识别多语言开源库开源项目模型
GLiNER是基于双向Transformer编码器的命名实体识别模型,能够识别多种实体类型,是传统NER模型的实用替代方案。与大型语言模型相比,GLiNER在资源受限场景中更高效且成本更低。该模型支持多语言并易于安装,用户可通过Python库轻松集成和使用。最新版本更新了多个模型参数,提升了性能,适合广泛的语言环境。该模型由Urchade Zaratiana等人开发,旨在提升科研和工业界的文本分析能力。
BERT-Relation-Extraction - 改进BERT模型在关系抽取任务中的应用与效果分析
ALBERTBERTGithubPython关系抽取开源项目预训练
该项目实现了ACL 2019论文《Matching the Blanks: Distributional Similarity for Relation Learning》的PyTorch开源版本,涵盖BERT、ALBERT和BioBERT三种模型。项目提供预训练和微调方法,并通过SemEval 2010任务8和FewRel数据集验证了模型在关系抽取任务中的表现。
SpanMarkerNER - 命名实体识别的高效训练框架
BERTGithubHugging FaceNamed Entity RecognitionRoBERTaSpanMarker开源项目
SpanMarker是一个基于Transformer库的命名实体识别框架,支持BERT、RoBERTa和ELECTRA等编码器。框架提供模型加载、保存、超参数优化、日志记录、检查点、回调、混合精度训练和8位推理等功能。用户可以方便地使用预训练模型,并通过免费API进行快速原型开发和部署。
GLiNER - 通用轻量级命名实体识别模型
BERTGLiNERGithub命名实体识别开源项目机器学习自然语言处理
GLiNER是一个通用轻量级的命名实体识别模型,采用双向转换器编码器架构。它能识别任意类型的实体,填补了传统NER模型和大型语言模型之间的空白。GLiNER具有灵活性高、体积小、效率高的特点,适用于资源受限的场景。该模型支持自定义实体类型,可应用于信息提取、文本分类等多种自然语言处理任务。
Few-NERD - 大规模精细标注的命名实体识别数据集
BERTFew-NERDGithubfew-shot实体识别开源项目监督学习
Few-NERD是一个大规模精细标注的命名实体识别数据集,包含8种粗粒度类型、66种细粒度类型、188,200个句子、491,711个实体和4,601,223个标记。支持监督学习和少样本学习的三种基准任务。了解数据集的关键功能、最新更新,以及如何获取数据和运行模型的详细指南。
ColBERT - 基于BERT的快速大规模文本检索模型
BERTColBERTGithub信息检索向量相似度开源项目自然语言处理
ColBERT是一种基于BERT的检索模型,能在数十毫秒内实现大规模文本集合的高效搜索。该模型采用细粒度的上下文后期交互技术,将段落编码为令牌级嵌入矩阵,在保持检索质量的同时提高效率。ColBERT具备索引、检索和训练功能,适用于多种信息检索任务。模型提供预训练checkpoint和Python API,方便研究人员和开发者在实际项目中快速应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号