Project Icon

pytorch-CycleGAN-and-pix2pix

PyTorch中的高效CycleGAN和pix2pix图像翻译

该项目提供了PyTorch框架下的CycleGAN和pix2pix图像翻译实现,支持配对和无配对的图像翻译。最新版本引入img2img-turbo和StableDiffusion-Turbo模型,提高了训练和推理效率。项目页面包含详细的安装指南、训练和测试步骤,以及常见问题解答。适用于Linux和macOS系统,兼容最新的PyTorch版本,并提供Docker和Colab支持,便于快速上手。

PAIR-Diffusion - 多模态对象级图像编辑的开源解决方案
GithubPAIR Diffusion图像编辑多模态对象级别开源项目扩散模型
PAIR-Diffusion是一个开源的多模态对象级图像编辑器。它支持外观编辑、形状修改、对象添加和变体生成等功能,可通过参考图像和文本进行控制。该项目基于PyTorch开发,兼容各种扩散模型。PAIR-Diffusion在SDv1.5上实现,并使用COCO-Stuff数据集微调。这个工具为对象级图像编辑提供了灵活精确的解决方案。
pytorch-book - PyTorch 1.8入门与高级应用指南
GithubPyTorch开源项目深度学习生成对抗网络神经网络自然语言处理
这本书提供了《深度学习框架PyTorch:入门与实践(第2版)》的对应代码,基于PyTorch 1.8编写,内容涵盖基础使用、高级扩展和实战应用三大模块。读者可以学习从安装PyTorch、使用Tensor与自动微分系统、构建神经网络模块到进行数据加载与GPU加速等操作。此外,还讲解了向量化、分布式计算及CUDA扩展的高级技术,并通过图像分类、生成对抗网络、自然语言处理、风格迁移及目标检测等实战项目,深入理解并应用PyTorch进行深度学习开发。
imagen-pytorch - 文本到图像合成技术,基于Pytorch的Imagen实现
GithubImagenPytorchT5模型开源项目文本到图像神经网络
Google的Imagen是一种基于Pytorch实现的文本到图像神经网络,被视为此领域的新技术标杆。它采用简化的架构和优化的设计,例如级联DDPM、动态剪辑和内存高效的Unet设计。该项目在从文本转换成图像的合成过程中,表现出了相比DALL-E2的显著优势,为研究人员和开发者提供了实用的图像生成工具。
pytorch-AdaIN - PyTorch实现的实时风格迁移技术
AdaINGithubPyTorch开源项目深度学习计算机视觉风格迁移
这是基于论文《Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization》的非官方PyTorch实现。该项目提供实时任意风格迁移功能,包含预训练模型、测试脚本和训练选项。支持调整风格化程度、保留原始颜色和混合多种风格。适用于图像处理和艺术创作,提供了便捷的命令行界面。
docker-pytorch - PyTorch开发环境的Docker镜像
CUDADockerGPU加速GithubPyTorch开源项目深度学习
docker-pytorch项目提供预配置的Docker镜像,整合Ubuntu、PyTorch和可选的CUDA。该镜像支持GPU加速,便于搭建深度学习环境。用户可运行PyTorch脚本和图形化应用,也可自定义镜像。这个项目为PyTorch开发者提供了便捷的环境配置方案。
SRGAN-PyTorch - 基于GAN的单图像超分辨率实现
GithubPyTorchSRGAN图像处理开源项目生成对抗网络超分辨率
SRGAN-PyTorch是一个开源项目,实现了基于生成对抗网络的单图像超分辨率算法。该项目能够将图像放大4倍,同时保持高质量和细节。它提供了完整的训练和测试流程,包括预训练模型、数据集处理脚本和性能评估。研究者和开发者可以利用此项目复现原论文结果或在自定义数据上应用SRGAN技术。
DragGAN - 基于交互点的生成图像操作
DragGANGANGithubPyTorchSIGGRAPH 2023StyleGAN3开源项目
DragGAN项目介绍了一种基于交互点操作的生成图像技术,可以在生成图像流形上进行精确调整。内容包括技术实现步骤如安装依赖、运行Docker、下载预训练权重和使用GUI进行图像编辑。该项目关键是集成了StyleGAN3和部分StyleGAN-Human代码,提供一个在Linux和Windows系统上高效运行的图像编辑工具。代码遵循CC-BY-NC许可,部分源代码基于Nvidia Source Code License。
PixArt-XL-2-512x512 - 快速生成高分辨率图像的高效能模型
GithubHuggingfacePixart-α开源项目扩散模型文本到图像模型深度学习生成模型
PixArt-α是一个基于Transformer架构的文本到图像生成框架,能够从文本提示生成高分辨率图像,最高可达1024像素。相比于Stable Diffusion v1.5,其训练时间仅为10.8%,大幅降低成本与碳排放。用户偏好评估显示,PixArt-α在实现效率与图像质量方面表现卓越,适用于艺术创作、教育用途及生成模型研究。但需要注意的是,其在图像还原现实性和复杂任务的执行上尚有局限。查看其GitHub或arXiv以了解更多细节。
rcg - RCG框架实现突破性无条件图像生成性能
GithubPyTorchRCG图像生成开源项目神经网络自监督学习
RCG是一种创新的自监督图像生成框架,在ImageNet 256x256数据集上达到了无条件图像生成的最佳性能。该框架缩小了无条件和有条件图像生成之间的性能差距。项目提供基于PyTorch的GPU实现,包含表示扩散模型(RDM)以及MAGE、DiT、ADM和LDM等多种像素生成器的训练和评估代码。同时提供预训练模型和可视化工具,便于研究人员复现和拓展相关工作。
awesome-ai-art-image-synthesis - AI图像生成与提示工程工具集合
AI ArtDalle2GithubMidJourneyPrompt EngineeringStableDiffusion开源项目
全面介绍Dalle2、MidJourney、StableDiffusion等AI图像生成工具和技术。提供适合初学者和高级用户的实用工具、提示和技巧,以及丰富的资源,包括商业和开源模型、提示工程工具、后处理工具和社区支持。无论是了解如何使用这些工具生成图像,还是寻找灵感和学习资源,这里都能满足需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号