Project Icon

pytorch-CycleGAN-and-pix2pix

PyTorch中的高效CycleGAN和pix2pix图像翻译

该项目提供了PyTorch框架下的CycleGAN和pix2pix图像翻译实现,支持配对和无配对的图像翻译。最新版本引入img2img-turbo和StableDiffusion-Turbo模型,提高了训练和推理效率。项目页面包含详细的安装指南、训练和测试步骤,以及常见问题解答。适用于Linux和macOS系统,兼容最新的PyTorch版本,并提供Docker和Colab支持,便于快速上手。

pix2pix - 利用条件对抗网络的图像到图像翻译实现
Conditional Adversarial NetworksCycleGANGithubImage-to-Image TranslationPyTorchpix2pix开源项目
使用条件对抗网络实现图像到图像翻译,支持从建筑立面生成到日夜转换等多种任务。该项目能在小数据集上快速产生良好结果,并提供改进版的PyTorch实现。支持多种数据集和模型,并附有详细的安装、训练和测试指南。
pix2pixHD - 高分辨率图像到图像转换及语义编辑
GANsGithubpix2pixHD图像翻译开源项目语义操控高分辨率
此Pytorch实现的高分辨率图像到图像转换方法(如2048x1024),可以将语义标签图转化为真实感图像,或从面部标签图生成肖像。该项目适用于街景和肖像等图像生成及交互编辑。需要NVIDIA GPU,提供详细的安装、测试和训练指南,支持多GPU和自动混合精度训练。
CycleGAN - 可以从绘画生成照片、将马变成斑马、进行风格转换等的软件。
CycleGANGithubPyTorch图像转换对抗网络开源项目热门预训练模型
CycleGAN 利用循环一致性对抗网络,实现了无需成对输入输出数据的图像到图像的转换。这一技术广泛应用于风格转换、季节变换及更多复杂场景,支持PyTorch实现,并提供丰富的预训练模型。无论是艺术画作到现实照片的转换,还是不同季节间的景观变化,CycleGAN 都能提供令人印象深刻的视觉效果。
Guided-pix2pix - 引导式图像转换,双向特征变换的创新应用
Github双向特征转换图像翻译开源项目深度学习神经网络计算机视觉
Guided-pix2pix项目推出创新的图像转换方法,运用双向特征变换技术提高引导式图像生成的精确度。该方法在姿势迁移、纹理迁移和深度上采样领域展现出优异性能,生成的图像质量更高、更贴合引导信息。项目开放完整代码和预训练模型,为研究人员提供便利的实验和开发环境。
DeepImage-an-Image-to-Image-technology - 强大而多样化的图像生成与转换技术集合
CycleGANDeepImageGANGithubImage-to-ImageStyleGAN开源项目
DeepImage是一个综合性的图像生成与转换技术项目,包含多种先进算法如pix2pixHD、pix2pix和CycleGAN等。该项目提供了图像生成演示、理论研究资料和实践指南,涵盖从基础到前沿的生成对抗网络(GAN)技术。DeepImage为研究人员和开发者提供了一个全面的学习和实验平台,助力探索图像生成与转换的多种可能性。
img2img-turbo - 单步图像翻译模型
CycleGAN-TurboGithubimg2img-turbopix2pix-turbo图像转化对抗学习开源项目
通过对单步扩散模型(例如SD-Turbo)进行对抗性学习,img2img-turbo实现了高效的图像翻译。该方法适用于配对和未配对任务,并通过优化生成器架构来提升推理速度和结果多样性。CycleGAN-Turbo和pix2pix-turbo在Sketch2Image和Edge2Image等多个图像翻译任务中均表现出色。
cycle-diffusion - 零样本图像翻译与无配对图片转换的扩散模型方法
CycleDiffusionGithubHuggingFacePyTorch开源项目扩散模型零样本图像编辑
该项目展示了如何正规化扩散模型中的随机种子,并实现零样本图像到图像翻译和指导。CycleDiffusion方法无需配对图像,利用稳定扩散等模型实现图像翻译。项目还提供详细的安装和使用指南,包括依赖项、预训练模型和评估数据等内容,通过这些工具可提高生成图像的质量和一致性。
Keras-GAN - 多种生成对抗网络(GAN)的Keras实现与教程
GithubKeras-GAN图像生成开源项目机器学习深度学习生成对抗网络
该项目包含多种Keras实现的生成对抗网络(GAN),如AC-GAN、CycleGAN、Pix2Pix等,基于研究论文,提供核心概念的实现与详细教程。欢迎社区贡献以扩展更多GAN变体。
contrastive-unpaired-translation - 基于对比学习的无监督图像转换
Contrastive Unpaired TranslationCycleGANGithubPyTorch图像到图像转换对比学习开源项目
CUT项目提供了一种基于PyTorch的无监督图像间转换方法,采用局部对比学习和对抗学习技术。该方法较CycleGAN具备更快的训练速度和更低的内存占用,并且无需手工设计损失函数和反向网络,适合单图像训练。支持Linux或macOS系统及Python 3环境,适合在NVIDIA GPU上运行,整个训练和测试流程简单易操作。该项目由UC Berkeley和Adobe Research团队开发,并在ECCV 2020会议中展示。
gigagan-pytorch - 最新生成对抗网络GigaGAN的实现,优化训练收敛和模型稳定性
AdobeGigaGANGithubLAIONPyTorchStabilityAI开源项目
gigagan-pytorch项目实现了Adobe最新的生成对抗网络GigaGAN,优化了跳层激励和辅助重建损失,以提升训练收敛速度和模型稳定性。项目支持高分辨率上采样器,具备混合精度和多GPU训练功能。适合寻求高效稳定GAN训练的开发者和研究人员。可加入Discord社区,与LAION合作获取更多支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号