Project Icon

QATM_pytorch

基于PyTorch的质量感知模板匹配算法

QATM是一种质量感知模板匹配算法的PyTorch实现。这个开源项目提供了完整的代码实现,包括依赖项、使用说明和演示结果。它支持GPU加速,可用于图像识别和对象定位等计算机视觉任务。用户可以自定义样本图像和模板图像,项目展示了算法在多种模板上的匹配效果。

the-incredible-pytorch - PyTorch资源,包括教程、项目及工具库等
GithubPyTorch开源项目教程机器学习深度学习神经网络
详尽解析PyTorch生态系统!本项目集成了丰富的教程、库和视频资源,全面覆盖从基本知识到先进技术的不同需求。无论涉及数据可视化、对象检测或模型优化,均提供细致入微的资源,帮助各层次开发者提升机器学习实力。
pytorch-grad-cam - 全面解析AI在计算机视觉领域的可解释性技术
GithubGrad-CAMPyTorch可视化开源项目模型解释热门计算机视觉
pytorch-grad-cam是一个先进的AI解释性工具包,适用于PyTorch平台,提供了多种像素归因方法,支持常见的CNN和视觉变换器模型。这个包不仅可以用于生产中对模型预测的诊断,也适用于模型开发阶段。通过包括平滑方法和高性能的批处理支持,pytorch-grad-cam能够在多种场景下提供详尽可靠的视觉解释,助力研究人员和开发者深入理解模型决策过程。
brevitas - 面向神经网络量化的PyTorch库
BrevitasGithubPyTorch开源项目神经网络量化训练后量化量化感知训练
Brevitas是一个开源的神经网络量化PyTorch库,支持PTQ和QAT。它为常见PyTorch层提供量化版本,如QuantConv和QuantLSTM等,允许精细调整量化参数。兼容Python 3.8+和PyTorch 1.9.1-2.1,跨平台支持,推荐GPU加速。作为研究项目,Brevitas在深度学习模型压缩和效率优化方面具有重要应用价值。
mt-dnn - 多任务深度神经网络在自然语言理解中的最新应用
GithubMT-DNNPyTorch多任务深度神经网络开源项目自然语言理解预训练模型
该项目实现了基于PyTorch的多任务深度神经网络(MT-DNN),主要用于自然语言理解。最新版本添加了语言模型预训练和微调的对抗性训练功能。用户可以使用pip安装或通过Docker快速启动,项目提供详细的训练和微调步骤,支持序列标注和问答任务。此外,项目包含模型嵌入提取和训练加速功能。目前由于政策变化,公共存储解决方案暂不提供。
albumentations - 提升深度学习模型质量的图像增强Python库
AlbumentationsGithubPython库图像增强开源项目深度学习计算机视觉
Albumentations, 一个高效的Python库用于图像增强,通过逾70种方法优化深度学习和计算机视觉模型性能。支持PyTorch和TensorFlow框架,适合多种视觉任务如分类、语义分割和目标检测。
QFormer - 四边形注意力机制提升视觉Transformer性能
GithubVision Transformer图像分类开源项目注意力机制目标检测计算机视觉
QFormer是一种创新的视觉Transformer模型,采用四边形注意力机制替代传统窗口注意力。该模型通过可学习的四边形回归模块,将默认窗口转换为目标四边形进行计算,从而更好地建模不同形状和方向的目标。在图像分类、目标检测、语义分割和人体姿态估计等多项视觉任务中,QFormer在保持低计算成本的同时,性能显著优于现有的视觉Transformer模型。
pytorch-AdaIN - PyTorch实现的实时风格迁移技术
AdaINGithubPyTorch开源项目深度学习计算机视觉风格迁移
这是基于论文《Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization》的非官方PyTorch实现。该项目提供实时任意风格迁移功能,包含预训练模型、测试脚本和训练选项。支持调整风格化程度、保留原始颜色和混合多种风格。适用于图像处理和艺术创作,提供了便捷的命令行界面。
pytorch-auto-drive - 基于 PyTorch 的分割模型和车道检测模型
GithubPyTorchPytorchAutoDrive开源项目模型部署语义分割车道检测
框架基于纯Python和PyTorch,提供从模型训练、测试到可视化和部署的全方位支持。特色包括多种主干网络、简洁易懂的代码、混合精度训练及ONNX和TensorRT的部署支持。该框架中模型训练速度快,性能优于其他实现,支持多种数据集和模型方法,为自动驾驶研究提供可靠的基准测试和高效工具。
attention-ocr - 基于注意力机制的视觉OCR模型,实现与导出工具
Attention-OCRGithubOCRTensorflow人工智能图像识别开源项目
该项目提供了基于注意力机制的OCR模型,结合了CNN与LSTM,用于图像识别,并能够导出为SavedModel或frozen graph格式。用户可以通过生成TFRecords数据集、训练、测试及可视化等步骤完整运行该OCR系统。项目还支持通过Tensorflow Serving提供REST API服务,并可以在Google Cloud ML Engine上进行模型训练。目前该项目依赖Tensorflow 1.x,未来计划升级到Tensorflow 2。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号