Project Icon

modelmesh-serving

高效机器学习模型管理与部署平台

ModelMesh Serving是一个开源的机器学习模型管理控制器,用于管理ModelMesh这一通用模型服务管理和路由层。它实现了高效的模型部署、扩展和负载均衡,支持Triton、MLServer和TorchServe等多种主流模型服务运行时。通过自定义ServingRuntime功能,ModelMesh Serving可灵活集成其他模型服务器,为机器学习模型的生产环境部署提供了可靠的解决方案。

modelmesh - 高扩展性分布式模型服务管理框架
GithubKubernetesModelMesh分布式缓存开源项目模型服务管理高规模服务
ModelMesh是一个通用的模型服务管理框架,适用于大规模、高密度和动态变化的模型部署环境。它作为分布式LRU缓存,与各种模型服务器协同工作,优化运行时模型的服务。支持Kubernetes部署,提供自定义资源管理,并能无缝集成多种开源模型服务器。
kserve - 跨平台机器学习模型服务,提供高效扩展性强的推理功能
GithubKServeKubernetes开源项目机学习模型部署模型推理平台高可扩展性
KServe 提供 Kubernetes 自定义资源定义,支持多种机器学习框架,使用标准化推理协议进行预测和生成模型服务。它简化了自动扩展、网络配置和健康检查的复杂性,支持 GPU 自动扩展、零容量和金丝雀部署等高级功能,适用于生产级的机器学习服务,涵盖预处理、后处理和可解释性。更多信息请访问官网。
serving - 灵活且高效的机器学习模型推理平台
DockerGithubTensorFlow Serving开源项目机器学习模型部署高性能推理
TensorFlow Serving 是一个为生产环境设计的灵活且高性能的机器学习模型推理系统。它管理训练后的模型生命周期,通过高效查询表提供版本化访问,支持多模型和多版本同时部署。系统支持 gRPC 和 HTTP 推理端点,允许无缝部署新版本,支持金丝雀发布和 A/B 测试,并且延迟极低。调度器将推理请求分组以在 GPU 上联合执行,支持包括 TensorFlow 模型、嵌入、词汇表和特征转换在内的多种服务对象。
multi-model-server - 深度学习模型的部署工具
DockerGithubMulti Model ServerPython开源项目模型服务深度学习
Multi Model Server是一个灵活的工具,用于部署由各种ML/DL框架训练的深度学习模型。通过命令行界面或预配置的Docker镜像,可以快速设置HTTP端点处理模型推理请求。支持Python 2.7和3.6,提供适合CPU和GPU推理的不同MXNet pip包。详细的文档和使用示例,以及Slack频道和社区支持,进一步简化了用户使用体验。推荐在生产环境中使用Docker容器以提升安全性和性能。
model_server - 高性能AI模型部署系统 支持多框架和多设备
AI部署GithubOpenVINO Model Server开源项目微服务架构模型推理模型管理
OpenVINO Model Server是一个高性能AI模型部署系统,针对Intel架构优化。支持TensorFlow、PaddlePaddle和ONNX等多种框架,可在不同AI加速器上运行。系统通过gRPC和REST API提供服务,具备模型版本控制、动态输入和DAG调度等功能。适用于边缘计算和云环境,可提高资源利用率和推理效率。该系统还支持Python代码执行、gRPC流式传输和MediaPipe图形服务。OpenVINO Model Server适合微服务架构应用和Kubernetes环境部署,可实现水平和垂直推理扩展。
website - KServe简化机器学习模型部署和管理
GithubKServe开源项目文档社区网站贡献
KServe是开源机器学习模型服务平台,旨在简化AI模型部署和管理。项目网站提供全面文档、代码示例和社区资源。支持版本化文档,欢迎社区参与改进。平台为企业级AI部署提供灵活解决方案,包括最新文档、博客和贡献指南。
serve - 提高PyTorch模型服务效率和安全性的关键技术
GithubPyTorchTorchServe大规模模型安全性开源项目模型服务
TorchServe是一款高效灵活的平台,用于生产环境中PyTorch模型的部署和扩展。最新版本通过默认启用的令牌授权机制和增强的模型API控制,有效预防未授权API调用和恶意代码风险。此外,该平台还支持在不同环境(包括本地、云服务及各类硬件)中快速部署模型。
meshery - 云原生多集群管理和应用部署平台
GitOpsGithubKubernetesMeshery云原生管理多集群管理开源项目
Meshery是开源云原生管理平台,为Kubernetes多集群部署提供可视化和协作式GitOps功能。它集成250多种云原生基础设施,实现全面的生命周期、配置和性能管理。Meshery的特色功能包括上下文感知应用策略、WebAssembly过滤器管理和配置验证。作为可扩展平台,Meshery简化了YAML配置流程,优化云原生应用管理体验。
server - 开源AI推理服务,兼容多种深度学习和机器学习框架
AI推理GithubNVIDIA AI EnterpriseTriton Inference Server开源项目模型优化深度学习框架
Triton Inference Server是一款开源推理服务软件,支持TensorRT、TensorFlow、PyTorch等多种深度学习和机器学习框架。它优化了云端、数据中心、边缘和嵌入式设备的推理性能,适用于NVIDIA GPU、x86和ARM CPU,以及AWS Inferentia。主要功能包括动态批处理、模型流水线、HTTP/REST和gRPC协议支持等。通过Triton,用户可以轻松部署和优化AI模型,提升推理效率。
seldon-core - Kubernetes上的机器学习模型部署与管理平台
GithubKubernetesSeldon Core开源项目微服务机器学习模型部署
Seldon Core是专为Kubernetes环境设计的机器学习模型部署平台。支持主流框架,提供REST/GRPC接口,可扩展至数千模型。内置监控、日志、解释器、异常检测等功能,支持A/B测试和金丝雀发布。简化模型从开发到生产流程,适合企业级机器学习部署需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号