Project Icon

Codestral-22B-v0.1-IMat-GGUF

Codestral-22B-v0.1量化模型及IMatrix文件下载指南

Codestral-22B-v0.1项目提供了多种量化版本,包括Q8_0、Q6_K、Q4_K等,并支持IMatrix数据集的应用。用户可通过huggingface-cli下载这些文件,对于较大的文件,可使用gguf-split工具进行合并。更新版本修复了FIM标记缺失,并通过部分量化方法提升性能。项目涵盖的量化文件类型多样且灵活,满足不同的应用需求。

Codestral-22B-v0.1-GGUF - Codestral-22B量化实现代码生成的多样化选择
Codestral-22B-v0.1GithubHuggingfaceRAM管理huggingface-cli开源项目文本生成模型量化
Codestral-22B-v0.1模型通过llama.cpp量化,为代码生成提供多种文件选择,适应不同的硬件配置和性能需求。推荐使用高质量的Q6_K和Q5_K量化文件,以获取最佳效果。同时,文中介绍了I-quant与K-quant选择依据,帮助使用者在速度与效果之间找到平衡。文章还详细说明了如何使用huggingface-cli下载文件,以简化获取资源的流程。
magnum-v4-22b-i1-GGUF - 多种IMatrix量化模型的应用与选择
GithubHugging FaceHuggingfaceMagnum-v4-22bNicobossimatrix开源项目模型转量化
magnum-v4-22b-i1-GGUF项目提供多种基于IMatrix量化技术的模型,满足不同需求。从i1-IQ1_S到i1-Q6_K,文件大小从4.9GB到18.4GB,可在Huggingface下载,并附有使用指南以协助整合。项目感谢nethype GmbH及@nicoboss的技术支持,提升了模型的效率与质量。
MN-12B-Starcannon-v3-i1-GGUF - 多种量化选项提升模型性能和适应性
GithubHugging FaceHuggingfaceMN-12B-Starcannon-v3transformers开源项目模型量化模型静态量化
该项目提供多种量化文件类型和大小,满足不同用户需求,优化模型性能。用户可在mradermacher的Hugging Face页面获取IQ-quants与静态量化文件。有关GGUF文件的使用,建议查阅TheBloke的说明。本项目通过iMatrix文件,专注于高质量模型的量化,感谢nethype GmbH及nicoboss的硬件支持。
Qwen2-7B-Multilingual-RP-GGUF - 多语言量化优化模型集合,支持多种精度和高效推理
GGUFGithubHuggingfaceQwen2-7B-Multilingual-RPllama.cpp开源项目模型模型文件量化
本项目提供了Qwen2-7B-Multilingual-RP模型的多种GGUF量化版本,文件大小从2.46GB到9.12GB不等。使用llama.cpp的imatrix技术,涵盖Q8至Q2多个精度级别,包括传统K-quants和新型I-quants方案。用户可根据设备性能选择适合的版本,支持在CPU、GPU等环境下进行英语、韩语、日语、中文和西班牙语的多语言处理。
DeepSeek-Coder-V2-Lite-Base-GGUF - 文本生成量化模型的高效选择方案
DeepSeek-Coder-V2-Lite-BaseGithubHuggingfacegguf格式开源项目文件下载模型量化高质量模型
该项目通过llama.cpp和imatrix技术对文本生成模型进行量化处理,为不同硬件配置提供优化选择。模型文件允许根据RAM和VRAM大小选择最佳方案,从而提升运行效率。K-quants在多数应用中表现理想,而I-quants提供更优性能但在硬件兼容性上有特定要求。项目提供的工具和文档为用户在进行文本生成任务的过程中提供指导,帮助选择兼顾速度与质量的量化模型。
Midnight-Miqu-70B-v1.5-i1-GGUF - Midnight-Miqu-70B-v1.5量化模型:优化AI实施的多样化策略
GithubHuggingfaceMidnight-Miqu-70B-v1.5变压器库合并工具开源项目模型模型使用量化
此项目提供Midnight-Miqu-70B-v1.5的多种GGUF量化文件,采用权重和imatrix量化,支持多种规格和类型如IQ1至IQ4及Q5、Q6,适应速度、质量和空间需求的平衡。用户可参考TheBloke的README获取操作指南,适合寻求优化AI模型效率的开发者,助力高效机器学习模型部署。
gemma2-9B-daybreak-v0.5-i1-GGUF - 多规格IQ量化文件优化AI模型表现
Gemma2-9B-DaybreakGithubHugging FaceHuggingface使用方法开源项目模型模型文件量化
本项目提供多种规格的量化文件,供满足不同AI性能和质量需求的应用选择。用户可通过TheBloke的指南熟悉GGUF文件的使用和多部分合并,并根据具体要求选择合适的文件版本。量化文件包括从i1-IQ1到i1-Q6的不同规格,其中部分文件在优化速度的同时,保持了优秀的质量。感谢nethype GmbH和@nicoboss的技术支持,确保了高质量imatrix量化文件的生产。
Fimbulvetr-11B-v2-GGUF - Fimbulvetr-11B-v2量化文件选择,优化模型性能方案
Fimbulvetr-11B-v2GithubHuggingfacenethype GmbHtransformers使用指南开源项目模型量化文件
Fimbulvetr-11B-v2项目提供优化的静态量化文件,助力模型性能和效率提升。多种类型和大小的量化文件可供选择,满足不同需求。推荐Q4_K_S和Q4_K_M量化文件。新手可参考详细使用指南进行GGUF格式文件操作,简化模型集成流程。项目展示量化文件在性能提升上的潜力,用户可通过链接查阅更多资源和模型需求,实现应用扩展。
CodeQwen1.5-7B-GGUF - 丰富的量化模型选择,多平台优化性能
CodeQwen1.5-7BGithubHugging FaceHuggingface内存需求开源项目模型模型质量量化
通过llama.cpp工具实现多量化模型的生成,CodeQwen1.5系列提供不同文件大小和质量选项,适用于各种设备资源和性能需求。推荐选择高质量Q6_K和Q5_K_M格式,平衡性能与存储空间。该项目适合RAM和VRAM有限的用户,并支持多种格式在不同硬件平台上运行。新方法如I-quants提高性能输出,但与Vulcan不兼容,适用于Nvidia的cuBLAS和AMD的rocBLAS。丰富的特性矩阵便于深入比较选择。
Behemoth-123B-v1-GGUF - 多种量化策略优化文本生成模型效率
Behemoth-123B-v1GithubHuggingface开源项目性能优化文本生成模型模型下载量化
Behemoth-123B-v1-GGUF 项目运用 Llamacpp imatrix 技术进行模型量化,支持从 Q8_0 到 IQ1_M 的多种格式,适应不同硬件环境。项目涵盖多种文件种类,量化质量和大小各异,从高质到低质,满足多样使用需求。用户可根据 RAM 和 VRAM 选择合适文件,平衡速度与质量的追求。Q8_0 格式在嵌入和输出权重方面的质量表现突出,而适用于 ARM 芯片的 Q4_0_X_X 格式则显著提升运算速度,尤其适合低内存硬件。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号