Project Icon

Codestral-22B-v0.1-IMat-GGUF

Codestral-22B-v0.1量化模型及IMatrix文件下载指南

Codestral-22B-v0.1项目提供了多种量化版本,包括Q8_0、Q6_K、Q4_K等,并支持IMatrix数据集的应用。用户可通过huggingface-cli下载这些文件,对于较大的文件,可使用gguf-split工具进行合并。更新版本修复了FIM标记缺失,并通过部分量化方法提升性能。项目涵盖的量化文件类型多样且灵活,满足不同的应用需求。

DeepSeek-Coder-V2-Lite-Instruct-GGUF - 高性能代码模型的多版本量化优化支持多种硬件推理应用
DeepSeek-CoderGithubHuggingface人工智能代码生成开源项目模型模型压缩量化模型
本项目针对DeepSeek-Coder-V2-Lite-Instruct模型进行量化优化,提供20多种GGUF格式文件,大小从6GB到17GB不等。采用llama.cpp的imatrix技术实现高效压缩,同时保持模型性能。用户可根据硬件条件选择适合的版本,支持NVIDIA、AMD等平台的深度学习推理。
Phi-3.1-mini-128k-instruct-GGUF - 量化指导优化内存资源使用
GithubHuggingfacePhi-3-mini-128k-instruct下载文件开源项目模型模型选择量化高质量
项目利用llama.cpp和imatrix技术对模型进行量化,提供适合不同内存需求的文件。用户可通过huggingface-cli根据硬件选择量化格式,实现速度与质量平衡。同时,项目提供特性图表以指引用户选择‘I-quant’或‘K-quant’方法,满足不同硬件环境性能要求。
Replete-LLM-V2.5-Qwen-32b-GGUF - 量化模型文件下载指南,通过选择适合的文件优化性能
GithubHuggingfaceReplete-LLM-V2.5-Qwen-32b嵌入输出权重开源项目文本生成模型视觉处理量化
该项目使用llama.cpp工具进行模型量化,提供多种Replete-LLM-V2.5-Qwen-32b模型文件下载选项。每种文件类型均说明其特性,如高质量和性能等,并适应不同硬件环境,以帮助用户根据需求优化模型质量或速度。文件适用于多种RAM和VRAM配置,便于在不同系统中实现优异性能。
Nemotron-Mini-4B-Instruct-GGUF - 量化模型应用指南与选择推荐
项目通过llama.cpp实现模型的imatrix量化,支持多种格式用于文本生成。用户可在LM Studio中运行这些量化模型,选择合适版本以优化内存与性能。推荐Q6_K_L、Q5_K_L等高质量版本,适用于嵌入与输出权重要求高的场景。支持ARM芯片的Q4_0_X_X版本提供显著加速。使用huggingface-cli简单易用,确保资源充足以提升体验。
deepseek-coder-33B-instruct-GGUF - DeepSeek Coder 33B Instruct模型GGUF量化版本
AI编程助手Deepseek CoderGGUFGithubHuggingfacellama.cpp开源项目模型量化
本项目提供DeepSeek Coder 33B Instruct模型的GGUF量化版本。GGUF是llama.cpp团队开发的新格式,替代了旧有的GGML。该模型专注于计算机科学领域,不回答政治敏感或安全隐私等无关问题。项目包含多种量化参数选项,支持CPU和GPU推理,兼容多种第三方界面和库。用户可根据硬件配置和使用需求选择适合的量化版本。
MN-12B-Mag-Mell-R1-GGUF - 优化的GGUF量化模型集合,提供多种量化精度选项和详细性能对比
GGUFGithubHuggingfaceMN-12B-Mag-Mell-R1开源项目机器学习模型模型压缩量化
MN-12B-Mag-Mell-R1模型的GGUF量化版本包含从Q2到Q8的多种精度选项,文件大小范围在4.9GB至13.1GB之间。Q4_K系列在速度和质量上达到较好平衡,Q8_0版本则提供最高质量表现。项目通过性能对比图表和详细说明,展示了各量化版本的特点及适用场景。
gemma-2-9b-it-GGUF - AI语言模型量化版本满足多种硬件需求
GPU内存优化GithubHuggingfacegemma-2-9b-it开源项目文件格式转换机器学习模型模型量化
本项目提供Google Gemma 2 9B模型的多种量化版本,涵盖从高质量Q8_0到轻量级IQ2_M。详细介绍了各版本特点、文件大小和推荐用途,并附有下载使用指南。这些优化版本在保持性能的同时大幅减小体积,适配不同硬件和内存需求,使模型能在更多设备上运行。
Qwen2.5-Math-7B-Instruct-GGUF - 针对性能和空间优化的Qwen2.5数学模型GGUF量化版本
GGUFGithubHuggingfaceQwen2.5-Math-7B-Instruct大语言模型开源项目模型模型压缩量化
Qwen2.5-Math-7B-Instruct模型的GGUF量化版本集合,文件大小从2.78GB到15GB不等。采用K-quant和I-quant量化技术,适配主流GPU平台。Q6_K和Q5_K系列在模型性能和资源占用上取得较好平衡,可通过LM Studio实现便捷部署。
Qwen2-7B-Instruct-GGUF - 高效量化AI模型 多平台支持 便捷本地部署
GGUFGPU加速GithubHuggingfaceQwen2-7B-Instruct开源项目文本生成模型模型量化
Qwen2-7B-Instruct-GGUF是Qwen2-7B-Instruct模型的GGUF格式量化版本。该模型支持2至8比特量化,可在llama.cpp、LM Studio等多个平台上本地部署。GGUF格式具有高效性能和广泛兼容性,便于在个人设备上进行AI文本生成。该项目为用户提供了多种比特率的量化选项,以适应不同的硬件环境和性能需求。
Mistral-7B-Instruct-v0.1-GGUF - Mistral 7B Instruct模型的GGUF量化版本
AI模型GGUFGithubHuggingfaceMistral 7B开源项目模型自然语言处理量化
本项目提供Mistral 7B Instruct v0.1模型的GGUF格式量化版本。GGUF是llama.cpp团队推出的新格式,替代了GGML。项目包含2至8比特多种量化模型文件,支持CPU和GPU高效推理,适用于llama.cpp、text-generation-webui等多种客户端和库。此外还提供兼容性说明、文件说明和使用指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号