Project Icon

MIC

基于遮蔽图像一致性的域自适应方法

MIC(Masked Image Consistency)是一种新型无监督域自适应方法,通过学习目标域的空间上下文关系来提高视觉识别性能。该方法对遮蔽目标图像的预测与完整图像的伪标签保持一致性,使网络能够从上下文推断遮蔽区域的内容。MIC适用于图像分类、语义分割和目标检测等多个视觉任务,在合成到真实、白天到夜间、晴朗到恶劣天气等场景的域自适应中取得了显著的性能提升。

MIMDet - 掩码图像建模应用于目标检测的开源项目
GithubMIMDet卷积神经网络实例分割开源项目物体检测视觉变换器
MIMDet是一个利用掩码图像建模技术的开源项目,能够提升预训练的Vanilla Vision Transformer在目标检测中的表现。此框架采用混合架构,用随机初始化的卷积体系取代预训练的大核Patchify体系,实现多尺度表示无需上采样。在COCO数据集上的表现亮眼,使用ViT-Base和Mask R-CNN模型时,分别达到51.7的框AP和46.2的掩码AP;使用ViT-L模型时,成绩分别是54.3的框AP和48.2的掩码AP。
Awesome-MIM - 掩码图像建模在自监督表示学习中的应用与发展
GithubMasked Image ModelingTransformer开源项目深度学习自监督学习计算机视觉
该项目汇总了掩码图像建模(MIM)及相关的自监督学习方法。涵盖了从2008年以来的主要自监督学习研究,并展示了其在自然语言处理和计算机视觉领域的发展历程和关键节点。所有内容按时间顺序排列并定期更新,包括相关论文、代码和框架的详细信息,旨在帮助研究者深入理解和应用MIM方法。欢迎贡献相关文献或修正建议。
MIGC - 利用MIGC实现多实例文本生成图像
CVPR2024GithubMIGC多实例生成开源项目文本生成图像稳定扩散
MIGC项目的多实例生成控制器提升了文本生成图像的多样性和质量,包含COCO-MIG基准测试、在线Colab演示等资源。MIGC提升了属性控制,通过更换不同生成器权重,实现高质量和多样化图像生成。最新Consistent-MIG算法优化迭代编辑功能,保持未修改区域一致性并增强修改实例的一致性。此项目由浙江大学的ReLER实验室和华为监督。
UniMatch - 革新半监督语义分割的弱到强一致性方法
GithubUniMatch半监督学习开源项目深度学习计算机视觉语义分割
UniMatch是一个创新的半监督语义分割模型,适用于自然、遥感和医学图像分析。该模型重新定义了弱到强的一致性概念,在Pascal VOC、Cityscapes和COCO等多个标准数据集上实现了领先性能。UniMatch在各种标注比例下均优于现有方法,推动了半监督语义分割技术的发展。
SePiCo - 基于语义引导像素对比的域自适应语义分割方法
GithubSePiCo像素对比域适应开源项目深度学习语义分割
SePiCo是一种创新的域适应语义分割框架,通过语义引导的像素对比学习促进跨域像素嵌入空间的类别判别和平衡。该方法在多个域适应任务中显著提升了性能,包括GTAV到Cityscapes、SYNTHIA到Cityscapes和Cityscapes到Dark Zurich。SePiCo的突出表现使其被选为ESI高被引论文,展现了其在计算机视觉领域的重要影响。
HRDA - 突破性多分辨率域适应语义分割方法
GithubHRDA域适应多尺度开源项目语义分割高分辨率
HRDA是一种创新的多分辨率训练方法,用于无监督域适应的语义分割。它结合高分辨率裁剪保留细节和低分辨率裁剪捕获长程上下文,同时控制GPU内存占用。HRDA在多个基准测试中显著超越现有方法,并可扩展至域泛化。这种方法为自动驾驶等实际应用中的域适应问题提供新思路,推动了计算机视觉技术在复杂场景下的应用。
awesome-domain-adaptation - 领域自适应技术研究综合资源库
Github对抗学习开源项目无监督学习深度学习迁移学习领域适应
该项目汇集了领域自适应技术的最新研究论文、代码和相关资源。内容涵盖无监督、半监督、弱监督等多个子领域,以及计算机视觉、自然语言处理等应用场景。论文按主题分类整理,并提供代码实现链接,方便研究人员快速了解该领域前沿进展,是领域自适应研究的重要参考资料库。
ritm_interactive_segmentation - 迭代训练与掩码引导的交互式图像分割方法
Github交互式图像分割开源项目神经网络计算机视觉迭代训练遮罩引导
该项目提出了一种基于掩码引导的迭代训练方法,用于交互式图像分割。这种方法能够分割新对象,也可从外部掩码开始修正。采用简单前馈模型,无需额外优化即可达到先进性能。项目提供训练和测试代码、预训练模型及交互式演示,支持多种数据集和评估指标。
Segment-Anything-CLIP - 整合Segment-Anything与CLIP的图像分析框架
CLIPGithubsegment-anything人工智能图像分割开源项目计算机视觉
项目通过结合Segment-Anything的分割能力和CLIP的识别功能,构建了一个高效的图像分析框架。系统可自动生成多个分割掩码,并对每个掩码区域进行分类。这种创新方法不仅提高了图像分析的精度,还为计算机视觉领域的研究和应用开辟了新途径。
MDT - MDTv2图像合成模型:更快收敛和卓越性能
GithubMasked Diffusion Transformer人工智能图像合成开源项目深度学习计算机视觉
MDTv2是一种先进的深度学习图像合成模型,在ImageNet数据集上实现了1.58的FID分数,创造新的业界标准。该模型采用掩码潜在建模技术,提高了图像语义理解能力,学习速度比先前模型快10倍以上。MDTv2在图像生成质量和训练效率方面都有显著提升,为计算机视觉和人工智能领域带来了新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号