Project Icon

MIC

基于遮蔽图像一致性的域自适应方法

MIC(Masked Image Consistency)是一种新型无监督域自适应方法,通过学习目标域的空间上下文关系来提高视觉识别性能。该方法对遮蔽目标图像的预测与完整图像的伪标签保持一致性,使网络能够从上下文推断遮蔽区域的内容。MIC适用于图像分类、语义分割和目标检测等多个视觉任务,在合成到真实、白天到夜间、晴朗到恶劣天气等场景的域自适应中取得了显著的性能提升。

DiffusionMat - 创新图像抠图的序列细化学习方法
DiffusionMatGithubalpha遮罩三元图图像抠图开源项目扩散模型
DiffusionMat是一种新型图像抠图框架,利用扩散模型实现从粗略到精细alpha遮罩的过渡。它将图像抠图视为序列细化学习过程,通过对trimaps添加噪声并迭代去噪来引导预测。框架的主要创新包括校正模块和Alpha可靠性传播技术,旨在提高抠图精度和一致性。DiffusionMat还采用了专门的损失函数来优化alpha遮罩的边缘精度和区域一致性。在多个图像抠图基准测试中,该方法展现出优于现有技术的性能。
DIVA - 扩散模型辅助CLIP增强视觉理解能力
AI视觉CLIPDIVAGithub开源项目扩散模型迁移学习
DIVA是一种创新方法,利用扩散模型作为视觉助手优化CLIP表示。通过文本到图像扩散模型的生成反馈,DIVA无需配对文本数据即可提升CLIP视觉能力。在MMVP-VLM细粒度视觉评估基准上,DIVA显著提升了CLIP性能,同时保持了其在29个图像分类和检索基准上的强大零样本能力。这为增强视觉语言模型的视觉理解开辟了新途径。
IP-Adapter-Instruct - 多任务图像生成的突破性技术
GithubIP Adapter Instruct图像生成多任务学习开源项目扩散模型条件控制
IP-Adapter-Instruct是一种先进的图像生成技术,融合了自然图像条件和指令提示。这个模型能够高效处理多种任务,包括风格迁移和对象提取,同时保持高质量输出。它克服了传统文本提示在描述图像风格和细节方面的局限性,提供了更精确的图像生成控制。IP-Adapter-Instruct在实际应用中表现出色,为扩散模型的发展提供了新的可能性。
TF-ICON - 利用Text-driven Diffusion模型实现跨域图像无训练组合的框架
GithubICCV 2023TF-ICON开源项目扩散模型无训练跨域图像合成
TF-ICON是一个利用Text-driven Diffusion模型实现跨域图像无训练组合的框架。相比需要实例化优化或微调预训练模型的方法,TF-ICON无需额外训练或优化,就可无缝集成用户提供的对象,还使用了特别提示来帮助模型准确还原真实图像。实验表明,该方法在多个数据集(如CelebA-HQ、COCO和ImageNet)上的表现优于现有技术。
CLIP-ReID - 基于CLIP的无标签图像重识别新方法
CLIP-ReIDGithub人工智能图像重识别开源项目视觉语言模型计算机视觉
CLIP-ReID提出了一种无需具体文本标签的图像重识别新方法。该方法基于CLIP视觉-语言模型,结合CNN和ViT架构,并运用SIE和OLP等技术进行优化。在MSMT17等多个基准数据集上,CLIP-ReID展现了领先的性能,为图像重识别领域开辟了新的研究方向。
latent-consistency-model - 高效快速的少步推理图像合成模型
AI绘图GithubLatent Consistency Models图像生成开源项目扩散模型深度学习
Latent Consistency Models (LCM) 是一种创新的图像生成技术,通过将分类器自由引导蒸馏到模型输入中,实现高效的少步推理。LCM支持文本到图像和图像到图像的生成,在极短时间内生成高质量图像,同时提供多种易用的演示。该技术在保持图像质量的同时显著缩短推理时间,为实时图像生成提供了新的可能性。
MasaCtrl - 实现一致性图像合成与编辑
GithubMasaCtrl一致性图像合成图像编辑开源项目扩散模型无需微调
MasaCtrl是一种基于互自注意力控制的图像处理技术,实现了一致性图像合成和编辑。该方法结合源图像内容和文本提示生成的布局,无需额外微调即可进行非刚性图像修改。MasaCtrl支持多种应用场景,包括基于提示的合成、真实图像编辑、与可控扩散模型集成等,并可扩展到视频合成。这一技术兼容Stable Diffusion等多种模型,为图像创作提供了新的可能性。
cond-image-leakage - 改进图像到视频扩散模型中的条件图像依赖问题
DynamiCrafterGithubVideoCrafter图像到视频生成开源项目扩散模型条件图像泄漏
该研究揭示并解决了图像到视频扩散模型中的条件图像依赖问题。研究团队提出了适用于DynamiCrafter、SVD和VideoCrafter1等多种模型的即插即用推理和训练策略。这些策略减轻了模型对条件图像的过度依赖,增强了生成视频的动态效果。项目开源的代码、模型和演示为图像到视频生成研究提供了重要参考。
Generative-AI - 多模态图像合成与编辑技术及其分类
Data ModalityGenerative AIGithubMultimodal Image Synthesis and EditingTaxonomyVisual AIGC开源项目
该项目附有一篇综述论文,全面分析了多模态图像合成与编辑(MISE)和视觉AIGC的发展情况,并根据数据模态和模型架构进行了分类研究。通过此项研究,科研人员和技术开发者可以深入了解神经渲染、扩散方法、自回归方法及对抗生成网络(GAN)等不同技术及其应用,帮助更好地掌握多模态图像合成技术的前沿进展与实际应用。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号