Project Icon

MIC

基于遮蔽图像一致性的域自适应方法

MIC(Masked Image Consistency)是一种新型无监督域自适应方法,通过学习目标域的空间上下文关系来提高视觉识别性能。该方法对遮蔽目标图像的预测与完整图像的伪标签保持一致性,使网络能够从上下文推断遮蔽区域的内容。MIC适用于图像分类、语义分割和目标检测等多个视觉任务,在合成到真实、白天到夜间、晴朗到恶劣天气等场景的域自适应中取得了显著的性能提升。

Paint-by-Example - 通过扩散模型进行示范导向的图像编辑
GithubHuggingfacePaint by Example图像编辑开源项目扩散模型自监督训练
该项目通过自监督训练,重新组合源图像及示范图像,避免了直接复制粘贴带来的伪影。采用任意形状掩码和无分类器指导,提升编辑过程的可控性,并通过一次性前向扩散模型实现高保真图像编辑。项目展示了对自然图像的高效可控编辑效果,提供了预训练模型、测试基准和量化结果,适用于图像编辑和生成的研究与应用。
maskformer-swin-base-ade - 语义分割的新方法——MaskFormer的应用
GithubHugging FaceHuggingfaceMaskFormer图像分割开源项目模型深度学习语义分割
MaskFormer采用Swin骨干网络与ADE20k数据集,在语义分割中表现出色。该模型通过预测掩模和标签统一地解决实例、语义及全景分割任务,可通过Hugging Face平台上的预训练模型来深入研究其应用。
BackgroundMattingV2 - 实时高分辨率背景抠图技术的创新突破
Github实时处理开源项目深度学习背景抠图计算机视觉高分辨率
该项目开发了实时高分辨率背景抠图技术,通过额外背景图像实现高质量抠图。研究展示了创新的神经网络架构,并提供新数据集。成果获CVPR 2021最佳学生论文荣誉提名,推动视频处理和图像编辑技术发展。
MobileCLIP-S2-OpenCLIP - 高效图像-文本模型通过多模态强化训练实现性能突破
GithubHuggingfaceMobileCLIPOpenCLIP图像文本模型多模态强化训练开源项目模型零样本图像分类
MobileCLIP-S2-OpenCLIP是一款基于多模态强化训练的高效图像-文本模型。相比SigLIP的ViT-B/16模型,它在性能上有所超越,同时速度提升2.3倍,模型体积缩小2.1倍,且仅使用了1/3的训练样本。在ImageNet零样本分类任务中,该模型达到74.4%的Top-1准确率,在38个数据集上的平均性能为63.7%,体现了出色的效率与性能平衡。
RestoreFormer - 盲脸修复的跨域注意力模型
GithubRestoreFormer++人脸修复开源项目深度学习盲恢复高质量
RestoreFormer利用多头交叉注意力层实现高质量盲脸修复,其特点是从高质量字典中提取关键-值对用于面部重建。2023年9月项目添加了在线演示和更用户友好的推理方法,2023年1月新增了测试数据集。源代码和资源在GitHub提供,并包含详细的数据集准备和模型训练指南,支持多种评估指标。
IC-Light - AI驱动的图像光照重塑技术
GithubIC-Light人工智能图像重新照明开源项目深度学习照明操控
IC-Light项目通过人工智能技术实现图像光照的精确控制和重塑。该项目提供基于文本提示的重光照模型和基于背景的条件模型,可根据需求调整前景图像的光照效果。这一技术不仅能创造出独特的视觉效果,还能保持高度的光照一致性,为图像编辑和视觉内容创作提供新的可能性。
mask2former-swin-large-ade-panoptic - 通用图像分割模型,提升性能和效率
ADE20kGithubHuggingfaceMask2FormerMaskFormer分割开源项目模型视觉
Mask2Former利用多尺度可变形注意力Transformer,提高图像分割性能与效率。其掩蔽注意力解码器在不增加计算负担的情况下提升表现,适用于实例、语义和全景分割。基于ADE20k全景分割数据集的训练研究,提供优化的分割方案。
Make-It-3D - 单图生成高逼真3D模型
3D重建GithubICCV 2023Make-It-3D单张图像开源项目高保真
Make-It-3D项目利用训练良好的2D扩散模型,从单个图像生成高质量3D内容。方法采用两阶段优化流程,先优化神经辐射场整合正视图和新视角的扩散先验,后将粗略模型转化为纹理点云并提升现实感。实验显示,该方法在视觉质量和重建准确性上大幅领先,并支持文本到3D创建和纹理编辑等应用。
rcg - RCG框架实现突破性无条件图像生成性能
GithubPyTorchRCG图像生成开源项目神经网络自监督学习
RCG是一种创新的自监督图像生成框架,在ImageNet 256x256数据集上达到了无条件图像生成的最佳性能。该框架缩小了无条件和有条件图像生成之间的性能差距。项目提供基于PyTorch的GPU实现,包含表示扩散模型(RDM)以及MAGE、DiT、ADM和LDM等多种像素生成器的训练和评估代码。同时提供预训练模型和可视化工具,便于研究人员复现和拓展相关工作。
Smooth-Diffusion - 提升扩散模型潜在空间平滑性的新方法
CVPR 2024GithubSmooth Diffusion图像生成开源项目扩散模型潜在空间
Smooth Diffusion是一种创新的扩散模型技术,通过优化潜在空间的平滑性来提升模型性能。这种方法在图像插值、反演和编辑任务中展现出显著优势,实现了更连续的过渡效果、更低的反演误差,以及更好的未修改内容保留。通过在训练过程中引入变化约束,Smooth Diffusion为扩散模型研究开辟了新方向。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号