Project Icon

fann

高性能开源神经网络库

FANN是一个用C语言实现的开源神经网络库,支持多层网络结构和多种连接方式。它具备跨平台兼容性、高性能计算能力和易用性,提供丰富的训练算法和激活函数。该库支持15种以上编程语言绑定,附带完整文档和图形界面,适用于研究和商业开发。FANN让用户能够便捷地构建、训练和部署神经网络模型。作为一个广受欢迎的项目,FANN日均下载量约100次,支持RPROP和Quickprop等多种训练方法,实现了多种激活函数,并可在固定点和浮点数系统上运行。其执行速度比类似库快达150倍,同时保持了良好的灵活性。FANN持续维护,为人工智能研究和应用提供了可靠的基础设施。

ffcv-imagenet - 高效ImageNet训练框架提升模型性能
GithubImageNetPyTorchResNetffcv开源项目深度学习
ffcv-imagenet是一个高效的ImageNet训练框架,采用单文件PyTorch脚本实现。该项目能在标准方法1/10的时间内达到相同精度,支持多GPU并行和多模型同时训练。框架提供丰富的配置选项,结合FFCV数据加载和优化训练流程,使研究人员能更快迭代实验并获得高质量模型。项目还包含多种预设配置,适用于不同的训练需求和硬件环境。
ASE_ANI - 神经网络势能模型为原子模拟提供高效准确预测
ANIGithub分子动力学开源项目机器学习神经网络势能量子化学
ASE-ANI是一个开源的神经网络势能模型接口,为原子模拟环境(ASE)设计。它集成了ANI-1x和ANI-1ccx模型,可对CHNO元素进行高精度预测。该项目运用深度学习技术,实现了DFT级别的精度和显著降低的计算成本。ASE-ANI支持CUDA加速,适用于配备NVIDIA GPU的Ubuntu系统,为分子动力学模拟等应用提供高效解决方案。
openai-cpp - 轻量级C++库,用于简化与OpenAI API的集成
API集成C++库GithubOpenAI-C++libcurl开源项目机器学习
开源的OpenAI C++库,简化了在C++应用中调用OpenAI API的过程。兼容C++11及以上版本编译器,仅需两个头文件,无需额外依赖。支持全部OpenAI API功能,包括模型管理、完成、编辑、图像生成、嵌入和文件管理等。简单设置环境变量或直接在代码中配置API密钥即可使用,支持自定义实例管理,详情参见示例代码。
llm.c - 纯C和CUDA实现的高效轻量级语言模型训练框架
CUDAC语言GPU训练GithubLLM开源项目
llm.c是一个使用纯C和CUDA实现的高效轻量级语言模型训练框架。该项目不依赖PyTorch或cPython等大型框架,通过简洁代码实现GPT-2和GPT-3系列模型的预训练。llm.c支持单GPU、多GPU和多节点训练,提供详细教程和实验示例。项目在保持代码可读性的同时追求高性能,适用于教育和实际应用。此外,llm.c支持多种硬件平台,并有多个编程语言的移植版本。
FNA - 准确重现XNA4框架的开源桌面开发项目
FNAGithubXNA4开源开源项目游戏开发跨平台
FNA是一个开源项目,旨在为桌面环境重新实现XNA4框架。它提供高度兼容的功能,便于开发者将XNA游戏移植到现代平台。项目采用Microsoft Public License发布,提供详细文档,并通过GitHub接受问题报告和补丁提交,支持游戏开发和跨平台移植。FNA为游戏开发者提供了一个可靠的工具,以延续XNA项目的生命周期,同时支持跨平台开发,适用于希望将经典XNA游戏带到现代系统的开发团队。
fastmlx - FastMLX为MLX模型提供高性能托管API 支持视觉和语言模型
APIFastMLXGithubMLX模型图像处理开源项目机器学习
FastMLX是一个高性能API,用于托管MLX模型,包括视觉语言模型和语言模型。它提供OpenAI兼容接口,支持动态模型加载、多种模型类型和图像处理。FastMLX具有高效的资源管理能力,易于集成和扩展。通过多工作进程并行处理,提高了系统吞吐量和响应速度。此外,FastMLX支持函数调用功能,进一步增强了其多功能性。
SFML - 简单快速的跨平台多媒体开发库
C++GithubSFML多媒体库开源开源项目跨平台
SFML是一个跨平台的开源多媒体开发库,提供窗口、图形、音频和网络功能。它使用C++编写,支持C、.Net、Ruby、Python等多种语言。SFML适用于商业和个人项目,无使用限制。该库提供完善的文档和教程,并拥有活跃的社区,有助于开发者快速构建多媒体应用。
neoml - 跨平台多语言支持的端到端机器学习框架
ABBYYGithubNeoMLONNX开源项目机器学习框架神经网络
NeoML是一个端到端机器学习框架,可用于构建、训练和部署模型,适用于计算机视觉和自然语言处理任务,如图像预处理、分类、OCR和数据提取。支持100多种神经网络层类型和20多种传统机器学习算法,兼容CPU和GPU,并支持ONNX格式。适用的编程语言包括Python、C++、Java和Objective-C,且可运行于Windows、Linux、macOS、iOS和Android平台。
PFLlib - 个性化联邦学习算法库和评估平台
GithubPFLlib个性化开源项目数据集算法库联邦学习
提供36种传统和个性化联邦学习算法,涵盖3种场景和20个数据集。专注于统计异质性数据,支持高效GPU内存使用及新增的隐私保护功能。新手用户通过简单的示范指南即可快速上手,参与贡献算法、数据集和评估指标。支持非独立同分布和不均衡数据,并可在多达500个客户端上进行训练模拟。
tensorflow - 开源机器学习平台的最新发展
APIGithubTensorFlow开源平台开源项目机器学习神经网络
TensorFlow是一个开源的机器学习平台,拥有完整的工具和资源生态系统。它由Google Brain团队开发,提供Python和C++的API支持,适应多种研究和应用需求。用户可以参照官方文档进行安装,包括使用pip、Docker以及从源码构建等方法。TensorFlow定期更新以提升性能和安全性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号