Project Icon

equiformer-pytorch

SE(3)/E(3)等变注意力网络的高效PyTorch实现

Equiformer-pytorch是一个基于PyTorch的SE(3)/E(3)等变注意力网络实现。该项目采用MLP注意力机制和非线性消息传递,实现了最先进的性能。它支持可逆网络以提高内存效率,并集成了最新的球谐函数稀疏化技术,大幅提升计算效率。Equiformer-pytorch还提供边缘和邻接矩阵支持,适用于蛋白质折叠等各种3D原子图任务。

External-Attention-pytorch - 注意力机制和主干网络的PyTorch实现合集
AttentionFightingCVGithub代码库开源项目深度学习计算机视觉
该项目提供了多种注意力机制和主干网络的PyTorch实现代码。涵盖External Attention、Self Attention、Squeeze-and-Excitation等注意力机制,以及ResNet、MobileViT等主干网络。代码结构清晰,注释详细,既可帮助初学者理解核心原理,也可作为科研和工业应用的可复用组件。项目适合深度学习爱好者学习和实际使用。
Graphormer - 优化分子科学中的AI研究和应用
Azure Quantum ElementsGithubGraphormer分子建模开源项目材料科学药物发现
Graphormer是一个深度学习包,用于加速分子科学中的AI研究和应用,如材料发现和药物发现。它支持PyG、DGL、OGB和OCP的数据接口,并采用fairseq框架。提供PCQM4M和PCQM4Mv2的预训练模型,特别适合大规模分子建模任务。优化的预训练版本可在Azure Quantum Elements上使用。
BEVFormer - 多摄像头鸟瞰图学习框架助力自动驾驶感知
BEVFormerGithub多相机感知开源项目目标检测自动驾驶鸟瞰图表示
BEVFormer是一个用于自动驾驶感知的开源框架,通过时空Transformer从多摄像头图像中学习统一的鸟瞰图表示。该方法利用预定义的网格查询,结合空间交叉注意力和时间自注意力机制,有效聚合多视角的空间和时序信息。在nuScenes测试集上,BEVFormer达到56.9%的NDS指标,显著超越现有方法,与激光雷达系统性能相当。这一创新为基于纯视觉的3D目标检测提供了新的基准。
commented-transformers - 精细注释的Transformer在PyTorch中的实现
Attention机制BERTGPT-2GithubPyTorchTransformer开源项目
详细注释的Transformer实现,涵盖从头创建Transformer系列,包括注意力机制和整体Transformer的实现。提供双向注意力、因果注意力及因果交叉注意力的实现,以及GPT-2和BERT模型的单文件实现,兼容torch.compile(..., fullgraph=True)以提高性能。
PersFormer_3DLane - PersFormer基于透视变换实现精确的3D车道线检测
3D车道线检测GithubOpenLane基准PersFormerPyTorch实现开源项目透视变换
PersFormer是一种创新的3D车道线检测模型,采用基于Transformer的模块生成BEV特征并参考相机参数。模型能同时进行2D和3D车道检测,提升特征一致性与多任务学习效果。PersFormer在OpenLane和Apollo 3D Lane Synthetic数据集上的表现优异,超越了多种现有方法,并提供简便的安装与评估说明以及详细的训练和测试指南,成为3D车道检测领域的重要进展。
h-transformer-1d - 高效序列学习的分层注意力变换器实现
GithubH-Transformer-1DTransformer序列学习开源项目神经网络长程注意力
H-Transformer-1D是一个开源项目,实现了基于分层注意力机制的Transformer模型。这种实现使序列学习达到亚二次方复杂度,在Long Range Arena基准测试中表现优异。项目支持可变序列长度、可逆性和令牌移位等功能,适用于长序列数据处理。该实现主要提供编码器(非自回归)版本,为自然语言处理和机器学习领域提供了新的研究方向。
actionformer_release - 基于Transformer的高精度动作时刻定位模型
ActionFormerActivityNetGithubTHUMOS14Transformer开源项目时序动作定位
actionformer_release是一个基于Transformer的动作定位模型,能够检测动作实例的起止点并识别动作类别。在THUMOS14数据集上,该模型取得了71.0%的mAP,超越之前的最佳模型14.1个百分点,并首次突破60%的mAP。此外,该模型在ActivityNet 1.3和EPIC-Kitchens 100数据集上也取得了优异成绩。该项目设计简洁,通过局部自注意力机制对未剪辑视频进行时间上下文建模,并可一次性精确定位动作时刻。代码和预训练模型已开源,可供下载和试用。
attention-gym - FlexAttention API的注意力机制实验工具集
Attention GymFlexAttentionGithubPyTorch开源项目机器学习注意力机制
Attention Gym是一个基于FlexAttention API的开源工具集,用于实验和优化各种注意力机制。项目提供了多种注意力变体的实现、性能对比工具和实用函数,包括示例脚本和可视化组件。研究人员和开发者可以利用这些资源来探索、理解和应用先进的注意力技术,从而在自己的模型中实现更高效的注意力机制。
deep_sort_pytorch - 使用PyTorch实现的Deep Sort多目标追踪算法
Deep SortGithubMask RCNNPyTorchYOLOv3YOLOv5开源项目
本项目实现了基于PyTorch的Deep Sort多目标追踪算法,结合CNN模型进行特征提取,并采用YOLOv3和YOLOv5等先进检测器代替原始的FasterRCNN。项目还支持多GPU训练和多类别目标追踪,并引入了Mask RCNN实例分割模型。用户可以使用Python和PyTorch轻松启动和自定义项目,适用于行人再识别等任务。详细的更新日志和使用指南使其对机器学习及计算机视觉爱好者和研究人员尤为有用。
theseus - 构建适用于机器人和视觉应用的定制非线性优化层
GithubPyTorchTheseus开源项目机器人神经网络非线性优化
Theseus 是一个高效的通用库,专门用于在 PyTorch 中构建定制的非线性优化层,支持机器人和视觉问题中的端到端可微分架构。其特性包括二阶非线性优化器、线性求解器、向量化和 GPU 加速,有助于提高计算速度和内存使用效率。该库通过结合领域专用模型和神经网络模型,在保持计算梯度的同时优化 AI 模型,非常适合研究人员和开发者使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号