Project Icon

lion-pytorch

Google Brain团队研发的优化器,可提升语言模型和文本生成效果

Lion是一种由Google Brain团队开发的新型优化器,部分效果优于Adam(w)。本文介绍了Lion在Pytorch中的实现和使用方法。通过调整学习率、权重衰减和参数β1、β2,Lion在语言建模和文本生成等任务中表现良好。其安装与使用简单,适合各种大型模型的训练。

Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic - 多语种量化优化模型,显著降低内存占用
GithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic多语言支持开源项目文本生成模型模型优化量化
通过将权重和激活量化为FP8格式,该项目优化了Llama-3.1-Nemotron模型,显著降低了GPU内存与磁盘的占用。模型适用于商业与研究,支持多语言开发和会话助手的构建。利用vLLM,可以实现高效部署并具有OpenAI兼容性。Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic在诸多测试中表现优良,在Arena-Hard评估中达99.41%的恢复率。
Meta-Llama-3.1-8B-bnb-4bit - Unsloth技术实现高效低资源的Llama 3.1模型微调
GithubHuggingfaceLlama 3.1Transformers大语言模型开源项目性能优化模型模型微调
该项目利用Unsloth技术对Meta-Llama-3.1-8B模型进行高效微调,节省58%内存并将训练速度提升2.4倍。提供多个免费Google Colab笔记本,支持Llama-3.1、Gemma-2、Mistral等模型的微调,便于获得性能优化的定制模型。适合资源受限的研究者和开发者使用,实现低成本高效率的大语言模型优化。
torchtune - PyTorch原生库助力简化大语言模型开发
GithubLLMPyTorchtorchtune开源项目微调模型训练
torchtune是一个PyTorch原生库,专为简化大语言模型(LLM)的创建、微调和实验而设计。该库提供了主流LLM的PyTorch实现、易用的微调技术配方、YAML配置文件和多种数据集格式支持。torchtune注重与生态系统工具集成,如Hugging Face、EleutherAI评估工具和PyTorch FSDP等。支持多种模型和微调方法,并优化内存效率,适配不同硬件环境。
Xwin-LM-7B-V0.2 - 优化大语言模型对齐技术,显著提升性能
AlpacaEvalGithubHuggingfaceXwin-LM大语言模型对齐技术开源项目强化学习模型
Xwin-LM项目开发并开源大语言模型对齐技术,涵盖监督微调、奖励模型等多种方法。基于Llama2构建的版本在AlpacaEval评测中表现卓越,超过GPT-4。最新的Xwin-LM-7B-V0.2和13B-V0.2在与GPT-4的比较中分别达到59.83%和70.36%胜率。项目不断更新以提高模型的稳定性和可重复性。
musiclm-pytorch - Pytorch实现的音乐生成模型MusicLM
AudioLMGithubMuLaNMusicLMPytorch开源项目音乐生成
MusicLM-Pytorch通过使用Google的新型SOTA音乐生成模型来生成音乐。该项目结合了文本条件的AudioLM和MuLan文本-音频对比学习模型。通过MuLaNEmbedQuantizer获取条件嵌入,用户可以在经过训练后,实现语义、粗粒度和细粒度的三种AudioLM转换器的音乐生成。项目包含详细的安装和使用指南,适合对AI音乐生成技术感兴趣的开发者。
llama-3-8b - 优化Llama 3 效率提升 内存占用减少
AI绘图GithubHuggingfaceLlama3内存使用开源项目性能优化模型模型微调
llama-3-8b项目通过Unsloth技术在Colab平台上提供免费调优服务,支持包括Llama-3 8b和Gemma 7b在内的多种模型。项目以简单操作为特征,使模型在提升两倍以上速度和减少70%内存使用的同时,满足模型高效更新需求,适用于开发者和研究人员。所有笔记本友好初学者,并支持数据集和框架的多样性导出与上传。
Qwen2-0.5B - 使用Unsloth提升微调效率和内存优化
GithubHuggingfaceLlamaQwen2Unsloth内存优化开源项目快速微调模型
Unsloth提供的工具支持在Google Colab上微调多种模型,如Llama、Gemma、Mistral等,速度提升可达5倍,内存使用减少至74%。简便的操作流程允许用户快速上传数据集并运行所有步骤,生成优化后的模型,支持导出和上传至各大平台,显著提高微调效率,是开发和测试AI模型的可靠工具。
llama-3-2-1b-sft - 超大规模对话数据集的精细调优AI模型
GithubHuggingfacellama-3-2-1b-sft开源项目微调模型训练数据集超参数超大规模语言模型
该项目将NousResearch的Llama-3.2-1B模型进行精细调优,使用HuggingFaceH4/ultrachat_200k数据集以提高对话处理性能。在多GPU分布式训练中,使用Adam优化器和余弦学习率调度策略,该模型在验证集上的损失率降低至1.2759。适用于广泛的自然语言处理应用,特别是在对话生成和交互式AI领域中。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
LaMDA-rlhf-pytorch - Google对话AI模型的开源预训练实现
GithubLaMDAtransformer架构开源实现开源项目自然语言处理预训练模型
LaMDA-rlhf-pytorch是Google LaMDA对话AI模型的开源PyTorch实现,聚焦2B参数预训练架构。项目整合了T5相对位置编码、门控GELU激活函数和GPT式解码器结构,并提供预训练脚本、Hugging Face数据集集成和Weights & Biases日志记录功能。后续将加入SentencePiece分词器、详细文档、微调脚本和推理能力。此项目为AI研究者和开发者提供了研究大规模对话模型的平台。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号