Project Icon

self-rewarding-lm-pytorch

自我奖励语言模型训练框架的开源实现

self-rewarding-lm-pytorch是一个开源项目,实现了MetaAI提出的自我奖励语言模型训练框架。该项目包含SPIN算法实现,提供灵活的微调配置选项,支持自定义奖励提示、任意顺序的微调策略和批量采样。这个工具能帮助研究人员探索和改进语言模型的自我学习能力。

自我奖励语言模型

实现了MetaAI提出的自我奖励语言模型中的训练框架

他们真的很认真地对待了DPO论文的标题

这个库还包含了SPIN的实现,Nous ResearchTeknium对此表示了乐观。

致谢

安装

$ pip install self-rewarding-lm-pytorch

使用方法

import torch
from torch import Tensor

from self_rewarding_lm_pytorch import (
    SelfRewardingTrainer,
    create_mock_dataset
)

from x_transformers import TransformerWrapper, Decoder

transformer = TransformerWrapper(
    num_tokens = 256,
    max_seq_len = 1024,
    attn_layers = Decoder(
        dim = 512,
        depth = 1,
        heads = 8
    )
)

sft_dataset = create_mock_dataset(100, lambda: (torch.randint(0, 256, (256,)), torch.tensor(1)))
prompt_dataset = create_mock_dataset(100, lambda: 'mock prompt')

def decode_tokens(tokens: Tensor) -> str:
    decode_token = lambda token: str(chr(max(32, token)))
    return ''.join(list(map(decode_token, tokens)))

def encode_str(seq_str: str) -> Tensor:
    return Tensor(list(map(ord, seq_str)))

trainer = SelfRewardingTrainer(
    transformer,
    finetune_configs = dict(
        train_sft_dataset = sft_dataset,
        self_reward_prompt_dataset = prompt_dataset,
        dpo_num_train_steps = 1000
    ),
    tokenizer_decode = decode_tokens,
    tokenizer_encode = encode_str,
    accelerate_kwargs = dict(
        cpu = True
    )
)

trainer(overwrite_checkpoints = True)

# 每个微调阶段后的检查点将保存到 ./checkpoints

SPIN可以按以下方式训练 - 它也可以添加到微调流程中,如readme的最后一个示例所示。

import torch

from self_rewarding_lm_pytorch import (
    SPINTrainer,
    create_mock_dataset
)

from x_transformers import TransformerWrapper, Decoder

transformer = TransformerWrapper(
    num_tokens = 256,
    max_seq_len = 1024,
    attn_layers = Decoder(
        dim = 512,
        depth = 6,
        heads = 8
    )
)

sft_dataset = create_mock_dataset(100, lambda: (torch.randint(0, 256, (256,)), torch.tensor(1)))

spin_trainer = SPINTrainer(
    transformer,
    max_seq_len = 16,
    train_sft_dataset = sft_dataset,
    checkpoint_every = 100,
    spin_kwargs = dict(
        λ = 0.1,
    ),
)

spin_trainer()

假设你想尝试自己的奖励提示(而不是LLM作为裁判)。首先你需要导入RewardConfig,然后将其作为reward_prompt_config传递给训练器


# 首先导入

from self_rewarding_lm_pytorch import RewardConfig

# 然后假设你想尝试礼貌地询问transformer

# reward_regex_template 是将在LLM响应中查找的字符串,用于解析出奖励,其中 {{ reward }} 被定义为一个数字

trainer = SelfRewardingTrainer(
    transformer,
    ...,
    self_reward_prompt_config = RewardConfig(
        prompt_template = """
        请礼貌地为以下用户提示和回应评分
        用户: {{ prompt }}
        回应: {{ response }}

        请按以下格式给出你的评分:
        评分: <0到10之间的整数评分>
        """,
        reward_regex_template = """
        评分: {{ reward }}
        """
    )
)

最后,如果你想尝试任意顺序的微调,你也可以通过将FinetuneConfig实例作为列表传递给finetune_configs来获得这种灵活性

例如,假设你想进行交替SPIN、外部奖励和自我奖励的研究

这个想法源自私人Discord频道中Teknium的建议。


# 导入配置

from self_rewarding_lm_pytorch import (
    SFTConfig,
    SelfRewardDPOConfig,
    ExternalRewardDPOConfig,
    SelfPlayConfig,
)

trainer = SelfRewardingTrainer(
    model,
    finetune_configs = [
        SFTConfig(...),
        SelfPlayConfig(...),
        ExternalRewardDPOConfig(...),
        SelfRewardDPOConfig(...),
        SelfPlayConfig(...),
        SelfRewardDPOConfig(...)
    ],
    ...
)

trainer()

# 每个微调阶段后的检查点将保存到 ./checkpoints

待办事项

  • 泛化采样,使其可以在批次中的不同位置进行,修复所有采样为批处理。同时允许左填充序列,以防有些人使用允许相对位置的transformer

  • 处理eos

  • 展示使用自定义奖励提示而不是默认LLM作为裁判的示例

  • 允许不同的配对采样策略

  • 早期停止器

    • 在主进程上处理所有完成时的中断信号
    • 接受评估模块,可以是验证损失或更复杂的东西。返回一个标量张量或单个整数/浮点数
  • 任意顺序的sft、spin、自我奖励dpo、带外部奖励模型的dpo

  • 允许对奖励进行验证函数(比如奖励必须是整数、浮点数、在某个范围内等)

  • 找出最佳处理不同kv缓存实现的方法,目前暂时不使用

  • 环境标志,自动清除所有检查点文件夹

引用

@misc{yuan2024selfrewarding,
    title   = {Self-Rewarding Language Models}, 
    author  = {Weizhe Yuan and Richard Yuanzhe Pang and Kyunghyun Cho and Sainbayar Sukhbaatar and Jing Xu and Jason Weston},
    year    = {2024},
    eprint  = {2401.10020},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
@article{Chen2024SelfPlayFC,
    title   = {Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models},
    author  = {Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2401.01335},
    url     = {https://api.semanticscholar.org/CorpusID:266725672}
}
@article{Rafailov2023DirectPO,
    title   = {Direct Preference Optimization: Your Language Model is Secretly a Reward Model},
    author  = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Stefano Ermon and Christopher D. Manning and Chelsea Finn},
    journal = {ArXiv},
    year    = {2023},
    volume  = {abs/2305.18290},
    url     = {https://api.semanticscholar.org/CorpusID:258959321}
}
@inproceedings{Guo2024DirectLM,
    title   = {Direct Language Model Alignment from Online AI Feedback},
    author  = {Shangmin Guo and Biao Zhang and Tianlin Liu and Tianqi Liu and Misha Khalman and Felipe Llinares and Alexandre Rame and Thomas Mesnard and Yao Zhao and Bilal Piot and Johan Ferret and Mathieu Blondel},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:267522951}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号