Project Icon

vector-quantize-pytorch

Pytorch向量量化库,可应用于图像和音乐生成

本向量量化库来源于Deepmind的TensorFlow实现,并转化为Pytorch库,使用指数移动平均法来更新字典。它在高质量图像(如VQ-VAE-2)和音乐(如Jukebox)生成中已取得成功,支持多种残差VQ方法、代码簿初始化和正则化,显著提升了量化效果和稳定性。

IQA-PyTorch - 纯Python和PyTorch图像质量评估工具箱
GPU加速GithubIQAPyTorch图像质量评估开源项目纯Python
IQA-PyTorch是一款基于纯Python和PyTorch的图像质量评估工具箱,支持多种主流全参考和无参考评估指标。通过GPU加速,评估速度优于Matlab实现,用户可通过命令行或代码进行图像质量评估。该工具箱还支持作为损失函数使用,提供便捷的基准数据集下载和详细文档,适用于评估各种场景。定期更新及多种预训练模型让它成为图像质量评估的理想选择。详情请查阅文档和示例代码。
EfficientQAT - 高效量化训练技术助力大型语言模型压缩
EfficientQATGithubPyTorch大语言模型开源项目模型压缩量化训练
EfficientQAT是一种针对大型语言模型的量化训练技术。该技术采用两阶段训练方法,包括分块训练所有参数和端到端训练量化参数,在压缩模型大小的同时保持性能。EfficientQAT支持GPTQ和BitBLAS等多种量化格式,已成功应用于Llama和Mistral等模型系列,有效降低模型存储需求,为大型语言模型的部署提供了实用方案。
Replete-Coder-Llama3-8B-GGUF - 基于llama.cpp优化的高效量化方法提升文本生成性能
GithubHuggingfaceReplete-Coder-Llama3-8B开源项目数据集文本生成模型模型压缩量化
该开源项目利用llama.cpp进行模型量化,适用于HumanEval和AI2推理挑战等任务,提供多种量化选项如Q8_0和Q6_K,适应不同内存要求,同时优化性能表现。I-quant量化在低于Q4时表现良好,用户可依据自己的设备内存和GPU VRAM选择合适的量化格式,通过huggingface-cli便捷获取所需文件。
libimagequant - 将RGBA图像高效转换为8位索引图像的开源库
GithubRustlibimagequant图像量化库开源软件开源项目调色板转换
libimagequant是一个开源图像处理库,专门将RGBA图像转换为8位索引图像,包括alpha通道。该库适用于生成小型PNG和优质GIF图像,支持C和Rust语言开发。libimagequant提供简洁API,支持多线程处理和WASM兼容。它采用双重许可模式,可用于开源项目或通过商业许可应用于闭源软件。
quantized-models - 提供多源量化模型以提升大语言模型推理效率
GithubHuggingfacequantized-modelstransformers大型语言模型开源项目文本生成推理模型量化模型
quantized-models项目整合了多种来源的量化模型,旨在提高大语言模型的推理效率。模型支持者包括TheBloke、LoneStriker、Meta Llama等,提供gguf、exl2格式的支持。用户可通过transformers库便捷地进行文本生成,这些模型按现状发布,需遵循其各自的许可协议。
KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
q-diffusion - 扩散模型的创新量化方法
GithubQ-Diffusion图像生成开源项目扩散模型深度学习量化
Q-Diffusion是一种针对扩散模型的后训练量化方法。它能将无条件扩散模型压缩至4位精度,同时保持接近原模型的性能。该方法通过时间步感知校准和分离捷径量化技术解决了扩散模型量化的主要难题。Q-Diffusion不仅适用于无条件图像生成,还可用于文本引导的图像生成,首次实现了4位权重下的高质量生成效果。这一技术为扩散模型的高效实现开辟了新途径。
AQLM - 加性量化技术实现大型语言模型高效压缩
AQLMGithubPyTorch大语言模型开源项目推理量化
AQLM项目开发了一种名为加性量化的新技术,可将大型语言模型压缩至原规模的1/16左右,同时基本保持原始性能。该技术适用于LLaMA、Mistral和Mixtral等多种模型架构,并提供了预量化模型。项目包含PyTorch实现代码、使用教程和推理优化方案,为大规模语言模型的实际应用提供了新思路。
DeepSeek-Coder-V2-Lite-Base-GGUF - 文本生成量化模型的高效选择方案
DeepSeek-Coder-V2-Lite-BaseGithubHuggingfacegguf格式开源项目文件下载模型量化高质量模型
该项目通过llama.cpp和imatrix技术对文本生成模型进行量化处理,为不同硬件配置提供优化选择。模型文件允许根据RAM和VRAM大小选择最佳方案,从而提升运行效率。K-quants在多数应用中表现理想,而I-quants提供更优性能但在硬件兼容性上有特定要求。项目提供的工具和文档为用户在进行文本生成任务的过程中提供指导,帮助选择兼顾速度与质量的量化模型。
aimet - 深度学习模型优化的量化与压缩工具
AIMETGithubPyTorch开源项目模型压缩模型量化深度学习
AI Model Efficiency Toolkit (AIMET) 提供先进的模型量化和压缩技术,专注于优化已训练的神经网络模型。其主要功能包括跨层均衡、偏差校正、自适应舍入和量化感知训练,显著提升模型运行性能,降低计算和内存要求,并保持任务精度。AIMET 兼容 PyTorch、TensorFlow 和 ONNX 模型,通过 AIMET Model Zoo 提供优化的8位推理神经网络模型。同时,AIMET 支持空间SVD和通道剪枝等压缩技术,并提供可视化工具检查模型量化和压缩效果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号