Project Icon

vector-quantize-pytorch

Pytorch向量量化库,可应用于图像和音乐生成

本向量量化库来源于Deepmind的TensorFlow实现,并转化为Pytorch库,使用指数移动平均法来更新字典。它在高质量图像(如VQ-VAE-2)和音乐(如Jukebox)生成中已取得成功,支持多种残差VQ方法、代码簿初始化和正则化,显著提升了量化效果和稳定性。

Phi-3.1-mini-4k-instruct-GGUF - Phi-3.1-mini-4k-instruct量化技术在文本生成中的应用
GithubHuggingfaceNLPPhi-3.1-mini-4k-instruct开源项目数据集文件下载模型量化
该项目通过llama.cpp进行模型量化,提供多种量化文件选项,涵盖从高质量到适合低内存设备的多种场景。项目详细介绍了如何选择量化文件,并提供了在不同硬件环境下的最佳实践,对于有技术需求的用户,项目提供了功能特性对比分析,帮助理解量化与优化策略。
Phi-3.1-mini-128k-instruct-GGUF - 量化指导优化内存资源使用
GithubHuggingfacePhi-3-mini-128k-instruct下载文件开源项目模型模型选择量化高质量
项目利用llama.cpp和imatrix技术对模型进行量化,提供适合不同内存需求的文件。用户可通过huggingface-cli根据硬件选择量化格式,实现速度与质量平衡。同时,项目提供特性图表以指引用户选择‘I-quant’或‘K-quant’方法,满足不同硬件环境性能要求。
Awesome-Quantization-Papers - 深度学习模型量化研究论文综合列表
GithubTransformer低比特量化开源项目模型量化深度学习神经网络
Awesome-Quantization-Papers是一个全面的深度学习模型量化研究论文列表,涵盖AI会议、期刊和arXiv上的最新成果。项目根据模型结构和应用场景进行分类,重点关注Transformer和CNN在视觉、语言处理等领域的量化方法。通过定期更新,为研究人员提供模型量化领域的最新进展。
ao - 优化PyTorch工作流,实现高性能和内存占用减少
GithubPyTorchtorchao开源项目推理模型量化训练
torchao是一个用于PyTorch工作流的高性能库,能够创建并集成自定义数据类型和优化技术,实现推理速度提升至2倍,显存减少65%。无需大幅修改代码,保持准确度。支持量化、稀疏化及浮点数优化,适用于HuggingFace等模型。用户可以轻松优化模型,提高计算效率。支持int8、int4和float8等多种数据类型,兼容torch.compile()和FSDP。
musiclm-pytorch - Pytorch实现的音乐生成模型MusicLM
AudioLMGithubMuLaNMusicLMPytorch开源项目音乐生成
MusicLM-Pytorch通过使用Google的新型SOTA音乐生成模型来生成音乐。该项目结合了文本条件的AudioLM和MuLan文本-音频对比学习模型。通过MuLaNEmbedQuantizer获取条件嵌入,用户可以在经过训练后,实现语义、粗粒度和细粒度的三种AudioLM转换器的音乐生成。项目包含详细的安装和使用指南,适合对AI音乐生成技术感兴趣的开发者。
magvit2-pytorch - MagViT2视频生成和理解模型的PyTorch开源实现
AI模型GithubMagViT2Pytorch实现开源项目视频生成语言模型
MagViT2是基于语言模型的最新视频生成和理解技术。该PyTorch实现提供高效视频标记器和训练器,支持大规模数据集。项目包含无查找量化器,适用于多种模态。灵活架构设计允许自定义层和注意力机制,为研究人员提供探索和改进视频生成技术的工具。
titok-pytorch - 32 Token图像编码与重建框架
GithubPytorchTiTok图像处理图像重建开源项目深度学习
TiTok-Pytorch是一个基于PyTorch实现的图像编码和重建框架,源自ByteDance的研究。该项目将图像压缩为32个token,实现高效的图像重构和生成。TiTok-Pytorch提供简便的安装和使用方法,支持图像tokenization、重建和代码提取。这个框架适用于图像压缩、生成和重建等领域的深度学习项目,为高效图像处理提供了新的解决方案。
qwen2.5-7b-ins-v3-GGUF - 量化优化AI模型的多样化选择指南
GithubHuggingfaceQwen2.5-7b-ins-v3quantization参数嵌入权重开源项目模型
该项目利用llama.cpp的b3901版本和imatrix选项对AI模型进行量化优化,支持各种硬件的量化格式下载。在LM Studio中运行这些模型,可通过缩小文件大小实现更高效的部署。K-quant格式在低资源环境中表现突出,而I-quants则在某些情况下显示出其新方法的优越性能,尤其建议ARM芯片用户选择Q4_0_X_X以获取更快速的响应。
CompressAI - 基于PyTorch的端到端压缩研究开源库
CompressAIGithubPyTorch图像压缩开源项目深度学习评估平台
CompressAI是基于PyTorch的开源库,致力于端到端压缩研究。该库提供深度学习数据压缩的自定义组件、预训练图像压缩模型,以及评估工具用于比较学习型模型与传统编解码器。支持Python 3.8+和PyTorch 1.7+,为压缩技术研究提供了实用平台。
Qwen2.5-Coder-7B-Instruct-GGUF - 深度学习模型的多规格量化版本适配不同硬件和性能要求
GGUFGithubHuggingfaceQwen2.5-Coder-7B-Instructllama.cpp大语言模型开源项目模型量化
本项目为Qwen2.5-Coder-7B-Instruct模型提供了从15GB到2.78GB的多种量化版本。采用llama.cpp最新技术,包括K-quants和I-quants两种量化方案,并针对ARM架构优化。用户可根据设备内存容量和性能需求选择适合版本。各版本保留原始模型核心功能,适用于多种部署场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号