Project Icon

fuzzy-search

高效灵活的前端模糊搜索JavaScript库

fuzzy-search是一款高性能的前端模糊搜索JavaScript库。它采用n-gram和字符排序算法,支持多语言,查询速度通常低于10ms。该库允许灵活管理搜索实体和术语,无外部依赖,经过全面测试。fuzzy-search为开发者提供了快速、准确且易于集成的搜索解决方案,适用于各类Web应用。

Frontend Fuzzy Search

@m31coding/fuzzy-search is a frontend library for searching objects with ids (entities) by their names and features (terms). It is

  • Fast: A query takes usually well below 10 ms.
  • Accurate: Powered by n-grams with a novel approach of character sorting.
  • Multilingual: The language-agnostic design of the algorithm enables operation across all languages.
  • Flexible: Entities and their terms can be inserted, updated and removed.
  • Reliable: Well tested standalone library with no dependencies.

license npm version CI m31coding youtube X

fuzzy-search-preview

Installation

Install the package via npm:

npm install @m31coding/fuzzy-search

The following files are available in the dist folder for different use cases:

  • fuzzy-search.module.js (ESM)
  • fuzzy-search.cjs (CommonJS)
  • fuzzy-search.umd.js (UMD)
  • fuzzy-search.modern.js (Modern mode)
  • fuzzy-search.d.ts (TypeScript definitions)

This library uses microbundle. Please consult their documentation for more information on how to use the different files.

Usage

The most important definitions can be found in the folder interfaces. For creating a searcher, use the SearcherFactory. Here is a basic usage example (esm module syntax):

import * as fuzzySearch from './path/to/fuzzy-search.module.js';

const searcher = fuzzySearch.SearcherFactory.createDefaultSearcher();

const persons = [
  { id: 23501, firstName: 'Alice', lastName: 'King' },
  { id: 99234, firstName: 'Bob', lastName: 'Bishop' },
  { id: 5823, firstName: 'Carol', lastName: 'Queen' },
  { id: 11923, firstName: 'Charlie', lastName: 'Rook' }
];

const indexingMeta = searcher.indexEntities(
  persons,
  (e) => e.id,
  (e) => [e.firstName, e.lastName, `${e.firstName} ${e.lastName}`]
);
console.dir(indexingMeta);
/* {
  "entries": {
    "numberOfInvalidTerms": 0,
    "numberOfDistinctTerms": 12,
    "normalizationDuration": 0,
    "numberOfSurrogateCharacters": 0,
    "indexingDuration": 1
  }
} */

const result = searcher.getMatches(new fuzzySearch.Query('alice kign'));
console.dir(result);
/* {
  "matches": [
    {
      "entity": {
        "id": 23501,
        "firstName": "Alice",
        "lastName": "King"
      },
      "quality": 0.8636363636363635,
      "matchedString": "Alice King"
    }
  ],
  "query": {
    "string": "alice kign",
    "topN": 10,
    "minQuality": 0.3
  },
  "meta": {
    "entries": {
      "queryDuration": 0
    }
  }
} */

const removalResult = searcher.removeEntities([99234, 5823]);
console.dir(removalResult);
/* {
  "removedEntities": [
    99234,
    5823
  ],
  "meta": {
    "entries": {
      "removalDuration": 0
    }
  }
} */

const persons2 = [
  { id: 723, firstName: 'David', lastName: 'Knight' }, // new
  { id: 2634, firstName: 'Eve', lastName: 'Pawn' }, // new
  { id: 23501, firstName: 'Allie', lastName: 'King' }, // updated
  { id: 11923, firstName: 'Charles', lastName: 'Rook' } // updated
];

const upsertMeta = searcher.upsertEntities(
  persons2,
  (e) => e.id,
  (e) => [e.firstName, e.lastName, `${e.firstName} ${e.lastName}`]
);
console.dir(upsertMeta);
/* {
  "entries": {
    "numberOfInvalidTerms": 0,
    "numberOfDistinctTerms": 12,
    "normalizationDuration": 0,
    "numberOfSurrogateCharacters": 0,
    "upsertDuration": 0
  }
} */

const result2 = searcher.getMatches(new fuzzySearch.Query('allie'));
console.dir(result2);
/* {
  "matches": [
    {
      "entity": {
        "id": 23501,
        "firstName": "Allie",
        "lastName": "King"
      },
      "quality": 1,
      "matchedString": "Allie"
    }
  ],
  "query": {
    "string": "allie",
    "topN": 10,
    "minQuality": 0.3
  },
  "meta": {
    "entries": {
      "queryDuration": 0
    }
  }
} */

The following parameters are available when creating a query:

ParameterTypeDefaultDescription
stringstring-The query string.
topNnumber10The maximum number of matches to return. Provide Infinity to return all matches.
minQualitynumber0.3The minimum quality of a match, ranging from 0 to 1. When set to zero, all terms that share at least one common n-gram with the query are considered a match.

If the data terms contain characters and strings in non-latin scripts (such as Arabic, Cyrillic, Greek, Han, ... see also ISO 15924), the default configuration must be adjusted before creating the searcher:

const config = fuzzySearch.Config.createDefaultConfig();
config.normalizerConfig.allowCharacter = (_c) => true;
const searcher = fuzzySearch.SearcherFactory.createSearcher(config);

Moreover, if your dataset is large (> 100.000 terms), you may index the searcher in a web worker to avoid blocking the main thread, as shown in this usage example.

If your objects cannot be identified by a unique id, you can also pass (e) => e for the getId parameter of both indexEntities and upsertEntities. Just be aware that the getId function is used for equality checks and the creation of Maps, particularly utilized by the upsertEntities and removeEntities methods. For indexing plain strings, you can call:

const indexingMeta = searcher.indexEntities(
  ["Alice", "Bob", "Carol", "Charlie"],
  (e) => e,
  (e) => [e]
);

To try the demo and usage examples locally, clone the repository and execute the commands:

npm install
npm run build

To proceed, open the html file of interest (e.g., fuzzy-search-demo.html) with a local webserver. If you use VS Code, you may use the Live Server extension for this purpose.

Upsert and removal

This library was optimized for fast querying. At its core, a searcher employs integer indexes that can not be easily updated. The upsert operation is implemented by reindexing a secondary searcher, which is initially empty. Removal is implemented by blacklisting entities.

Consequently, repeated upsert operations with a large number of entities may be costly. In such cases, consider reindexing the searcher from scratch by calling the index method eventually.

Normalization

Query strings and data terms are normalized in the following normalization pipeline (order matters):

  • Null and undefined strings are replaced by an empty string.
  • Strings are lowercased and normalized to NFKC.
  • Replacements are applied to characters such as å -> aa, æ -> ae. See also Latin replacements.
  • Strings are normalized to NFKD.
  • Space equivalent characters are replaced by a space.
  • Surrogate characters, padding characters and other non-allowed characters are removed.
  • Strings are padded to the left, right and in the middle (replacement of spaces).

Normalization to NFKC decomposes characters by compatibility, then re-composes them by canonical equivalence. This ensures that the characters in the replacement table always match. Normalization to NFKD decomposes the characters by compatibility but does not re-compose them, allowing undesired characters to be removed thereafter.

The default normalizer config adopts the following values:

let paddingLeft = '$$';
let paddingRight = '!';
let paddingMiddle = '!$$';
let replacements = [fuzzySearch.LatinReplacements.Value];
let spaceEquivalentCharacters = new Set(['_', '-', '–', '/', ',', '\t']);
let treatCharacterAsSpace = (c) => spaceEquivalentCharacters.has(c);
let allowCharacter = (c) => {
  return fuzzySearch.StringUtilities.isAlphanumeric(c);
};

With this pipeline and configuration, the string Thanh Việt Đoàn is normalized to thanh viet doan before padding. With padding applied, it becomes $$thanh!$$viet!$$doan!. The choice of the padding is explained in the next section.

Sorted n-grams

The general idea of n-grams and the sorting trick is outlined in this blog post. In short, the data terms and the query string are broken down into 3-grams, e.g. the string $$sarah! becomes:

$$s, $sa, sar, ara, rah, ah!

The more common 3-grams between the query and the term, the higher the quality of the match. By padding the front with two characters, and the back with one character, more weight is given to the beginning of the string.

In addition, the characters of the 3-grams that don't contain '$' are sorted:

$$s, $sa, ars, aar, ahr, !ah

Sorting the characters increases the number of common n-grams for transposition errors, one of the most common types of errors in human typing. Not sorting the first n-grams assumes that transpositions are less likely to occur at the beginning of a string.

The quality is then computed by dividing the number of common n-grams by the number of n-grams of the longer string, query or term. Moreover, a 5% penalty is given if the query string does not match the term exactly. This accounts for the fact that even if two strings have the same 3-grams, they are not necessarily the same, i.e., compare aabaaa and aaabaa. With this approach, the following quality values are obtained:

QueryTermPadded queryPadded termCommon 3-gramsQuality
sarahsarah$$sarah!$$sarah!66 / 6 = 1.0
sarhasarah$$arah!$$sarah!55 / 6 * 0.95 = 0.79
sarsarah$$sar!$$sarah!33 / 6 * 0.95 = 0.475
arahsarah$$arah!$$sarah!33 / 6 * 0.95 = 0.475

Note that I refrain from explicitly computing the Damereau-Levenshtein distance between strings, in order to keep the queries fast.

Padding strings in the middle allows for extending the algorithm across word boundaries. sarah wolff becomes $$sarah!$$wolff! and matches wolff sarah with a quality of 0.95, if 3-grams that end with a '$' are discarded.

The overall approach outlined above can be summarized as: remove n-grams that end with '$', sort n-grams that don't contain '$'. The default configuration appears in the code as follows:

let ngramN = 3;
let transformNgram = (ngram) =>
  ngram.endsWith('$') ? null
  : ngram.indexOf('$') === -1 ? ngram.split('').sort().join('')
  : ngram;

let inequalityPenalty = 0.05;

Support and Contribution

This library is free. If you find it valuable and wish to express your support, please leave a star. You are kindly invited to contribute. If you see the possibility for enhancement, please create a GitHub issue and you will receive timely feedback.

Happy

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号