Project Icon

ehartford-WizardLM-Uncensored-Falcon-40b-gguf

探讨Falcon模型的量化技术与兼容性提升

本项目探讨了如何通过结合传统与现代量化技术提升Falcon 7B模型的性能与效率。虽然Falcon 40b模型已完全支持K-Quantisation,该方法还通过回退机制扩大以前不兼容模型层的支持范围。这样用户可以在文件大小不变的情况下提高输出质量或在更小的文件下保持性能。项目还讨论了gguf文件格式的应用,介绍了当前支持该格式的软件和多种量化文件选项。

Rombos-LLM-V2.6-Qwen-14b-GGUF - 基于llama.cpp的Qwen-14B量化模型集合
GGUFGithubHuggingfaceRombos-LLMllama.cpp开源项目模型模型压缩量化
llama.cpp量化的Qwen-14B开源项目,通过imatrix方案优化生成多种GGUF格式模型文件。模型尺寸从2GB到29GB不等,覆盖Q2至F16多种量化精度,并针对不同硬件架构进行优化。项目提供完整的模型选择指南,方便本地部署时根据实际硬件环境选择合适版本。
qwen2.5-7b-ins-v3-GGUF - 量化优化AI模型的多样化选择指南
GithubHuggingfaceQwen2.5-7b-ins-v3quantization参数嵌入权重开源项目模型
该项目利用llama.cpp的b3901版本和imatrix选项对AI模型进行量化优化,支持各种硬件的量化格式下载。在LM Studio中运行这些模型,可通过缩小文件大小实现更高效的部署。K-quant格式在低资源环境中表现突出,而I-quants则在某些情况下显示出其新方法的优越性能,尤其建议ARM芯片用户选择Q4_0_X_X以获取更快速的响应。
llama-30b-supercot-GGUF - Llama 30B Supercot GGUF:多种量化格式与GPU加速
GPU加速GithubHuggingfaceLlama 30B Supercot开源项目新格式模型模型文件量化
GGUF格式的Llama 30B Supercot模型支持GPU加速,具备多个量化选项。由ausboss创建,提供多种格式适应不同需求,推荐Q4_K_M格式以实现性能与质量的平衡。GGUF是GGML的替代格式,兼容多种用户界面和库,如llama.cpp、text-generation-webui,适合于机器学习和AI领域应用。
SuperNova-Medius-GGUF - 多种量化方法提升模型性能与适配性
ARMGithubHuggingfaceRAMSuperNova-Medius开源项目性能模型量化
SuperNova-Medius-GGUF项目通过llama.cpp工具对SuperNova-Medius模型进行多种量化处理,是以多样化版本满足不同应用的需求。精细化量化过程依托imatrix选项,提供了多种质量和性能的选择。用户可以根据自身硬件环境,如ARM架构设备、低RAM或需最大化GPU VRAM使用的场景,选择相应版本。此外,项目为文件选择提供了详细指南,确保用户能够找到适合其系统性能的最佳模型版本。这些量化技术为不同硬件上的文本生成任务提供了广泛的支持。
Llama-3-Smaug-8B-GGUF - Llama-3-Smaug-8B模型的GGUF格式文件 支持多级量化
GGUF模型GithubHuggingfaceLlama-3-Smaug-8B人工智能助手开源项目文本生成模型量化
Llama-3-Smaug-8B-GGUF项目提供abacusai/Llama-3-Smaug-8B模型的GGUF格式文件,支持2-bit至8-bit多级量化。项目介绍了使用llama.cpp加载模型的方法,并概述了GGUF格式及其兼容工具。该资源有助于用户了解GGUF格式,选择适合的工具进行本地部署和文本生成应用。
OpenHermes-2.5-Mistral-7B-GGUF - 高效推理的新型模型文件格式
GithubHuggingfaceOpenHermes-2.5-Mistral-7B下载指南开源项目模型模型兼容性量化量化方法
GGUF是一种由llama.cpp团队于2023年8月引入的新型模型文件格式,旨在取代GGML,不再受其支持。该格式兼容众多第三方用户界面及库,例如llama.cpp、text-generation-webui和KoboldCpp等平台,这些平台支持GPU加速,从而提高文本生成任务的效率。Teknium的OpenHermes 2.5 Mistral 7B模型在此格式下得以量化处理,通过多种量化方法平衡模型文件大小与推理质量,适用于包括CPU+GPU推理在内的多种场景。用户在多种设备和平台上使用该格式能获取所需模型,并通过Massed Compute的硬件支持获得性能优化。
Llama-3-8B-Instruct-DPO-v0.2-GGUF - Llama-3-8B的GGUF格式量化模型
GGUFGithubHuggingfaceLlama-3大型语言模型开源项目文本生成模型量化
Llama-3-8B-Instruct-DPO-v0.2模型的GGUF格式量化版本,提供2-bit至8-bit多级量化选项。该版本显著减小模型体积和内存需求,同时维持性能。采用ChatML提示模板,兼容多种GGUF格式支持工具,如llama.cpp和LM Studio。此轻量化版本使大型语言模型能在更多设备上本地运行,扩展了应用范围。
Phi-3.5-mini-instruct-GGUF - 高性能微软小型语言模型的量化方案
ARM芯片GGUFGithubHuggingfacePhi-3.5-mini-instruct开源项目模型模型权重量化
该项目基于llama.cpp框架,对Microsoft Phi-3.5-mini-instruct模型进行GGUF格式量化,提供从Q2到Q8等多个精度版本。每个量化版本都针对不同硬件平台进行了优化,包括针对ARM芯片的特殊优化版本。项目提供完整的模型特性对比和选择指南,帮助开发者根据实际需求选择合适的量化版本。
codegemma-7b-GGUF - 经过量化优化的代码生成模型,支持多种精度选择的GGUF格式
CodeGemmaGGUFGithubHuggingface开源项目性能对比文件大小模型模型量化
这个项目提供了CodeGemma-7b模型的多种量化版本,文件大小从2.16GB到9.07GB不等,采用GGUF格式。支持从Q8到IQ1的多种精度等级,可适应不同的硬件配置。其中Q6_K、Q5_K和Q4_K系列版本在性能和空间优化方面表现较好,适合生产环境使用。用户可根据自身的内存和显存情况选择合适的版本。
CodeQwen1.5-7B-GGUF - 丰富的量化模型选择,多平台优化性能
CodeQwen1.5-7BGithubHugging FaceHuggingface内存需求开源项目模型模型质量量化
通过llama.cpp工具实现多量化模型的生成,CodeQwen1.5系列提供不同文件大小和质量选项,适用于各种设备资源和性能需求。推荐选择高质量Q6_K和Q5_K_M格式,平衡性能与存储空间。该项目适合RAM和VRAM有限的用户,并支持多种格式在不同硬件平台上运行。新方法如I-quants提高性能输出,但与Vulcan不兼容,适用于Nvidia的cuBLAS和AMD的rocBLAS。丰富的特性矩阵便于深入比较选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号