Project Icon

MInference

动态稀疏注意力加速长上下文语言模型

MInference是一项新技术,通过利用长上下文语言模型注意力机制的动态稀疏性来加速预填充过程。该技术离线确定注意力头的稀疏模式,在线近似稀疏索引,并使用优化内核动态计算注意力。在A100 GPU上,MInference实现了预填充速度提升10倍,同时保持模型准确性。它支持LLaMA-3、GLM-4等多种长上下文模型,有效处理百万级别token的上下文。

DeepSpeed-MII - 开源低延迟模型推理库
DeepSpeed-MIIGithub优化技术低延迟开源项目模型支持高吞吐量
DeepSpeed-MII是一款开源Python库,专注于高吞吐量、低延迟和成本效益的模型推理。支持的技术包括块状KV缓存、连续批处理、高性能CUDA内核等,适用于37000多个模型,如Llama-2、Mixtral和Phi-2。v0.2版本提升了性能和功能,吞吐量提高至2.5倍。适用于语言模型及图像生成任务。
LLMLingua - 提示词压缩技术助力大语言模型效率提升
GithubLLMLingua大语言模型开源项目推理加速提示词压缩长文本处理
LLMLingua系列是一套创新的提示词压缩工具,可将提示词压缩至原长度的5%,同时保持大语言模型性能。通过小型语言模型识别并移除非必要标记,该技术有效解决长文本处理和上下文遗忘等问题,大幅降低API使用成本并提高推理效率。LLMLingua系列包含三个版本,适用于检索增强生成、在线会议和代码处理等多种场景。
KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
inference - 简化语言和多模态模型部署的强大工具
API接口GithubXorbits Inference分布式部署多模态模型开源项目模型部署
Xorbits Inference 是一个强大的库,旨在简化语言、语音识别和多模态模型的部署。研究人员、开发者和数据科学家都可以通过一个命令轻松部署和服务先进的内置模型。该库支持连续批处理、MLX后端、SGLang后端及LoRA技术,提供高效的硬件资源利用。Xorbits Inference 与LangChain、LlamaIndex等第三方库无缝集成,支持分布式部署和多种交互接口,是AI模型服务的理想工具。
AQLM - 加性量化技术实现大型语言模型高效压缩
AQLMGithubPyTorch大语言模型开源项目推理量化
AQLM项目开发了一种名为加性量化的新技术,可将大型语言模型压缩至原规模的1/16左右,同时基本保持原始性能。该技术适用于LLaMA、Mistral和Mixtral等多种模型架构,并提供了预量化模型。项目包含PyTorch实现代码、使用教程和推理优化方案,为大规模语言模型的实际应用提供了新思路。
gemma-2B-10M - Gemma 2B模型实现1000万token上下文处理 仅需32GB内存
Gemma 2BGithub内存优化局部注意力开源项目推理优化长上下文
gemma-2B-10M项目采用递归局部注意力机制,在32GB内存限制下实现了处理1000万token上下文的能力。该项目为Gemma 2B模型提供CUDA优化的推理功能,显著提升了处理效率。项目设计简洁易用,便于开发者快速应用。虽然目前处于早期阶段,但在长文本处理领域展现出巨大潜力,有望推动相关技术的进步。
MobileLLM - 轻量高效的移动设备语言模型
AI模型GithubMobileLLM开源项目深度学习神经网络语言模型
MobileLLM是一个针对移动设备优化的大型语言模型项目。该模型通过SwiGLU激活函数、深窄架构、嵌入共享和分组查询注意力等技术,在亿级参数规模下实现了高性能。MobileLLM在零样本常识推理任务中表现出色,不仅在125M和350M参数规模上超越了现有最先进模型,还成功扩展至600M、1B和1.5B参数规模,展示了其在移动设备应用中的潜力。
Awesome-LLM-Inference - 一系列关于涵盖了从基础框架到先进技术的大型语言模型推理的研究论文和配套代码
Awesome-LLM-InferenceGithub开源项目模型推理模型训练算法优化量化压缩
Awesome-LLM-Inference项目提供了一系列关于大型语言模型推理的研究论文和配套代码,涵盖了从基础框架到先进技术的全面资源,旨在帮助研究人员和开发者提高推理效率和性能。提供了全面的信息和技术支持,用于研究和开发高性能的大型语言模型。
mlc-llm - 通用大语言模型高性能部署引擎
AI模型优化GithubMLC LLMMLCEngine开源项目机器学习编译器高性能部署
MLC LLM是一款用于大语言模型的高性能部署引擎,支持用户在各种平台上开发、优化和部署AI模型。核心组件MLCEngine通过REST服务器、Python、JavaScript、iOS和Android等接口提供OpenAI兼容的API,支持AMD、NVIDIA、Apple和Intel等多种硬件平台。项目持续优化编译器和引擎,与社区共同发展。
MiniCPM - 轻量级大语言模型实现高性能端侧部署
GithubMiniCPM多模态开源模型开源项目模型量化端侧大语言模型
MiniCPM是一系列高效的端侧大语言模型,仅有2.4B非词嵌入参数。经过优化后,在多项评测中表现优异,甚至超越了一些参数量更大的模型。该项目支持多模态功能,可在移动设备上流畅运行。MiniCPM开源了多个版本,涵盖文本、多模态、量化和长文本等应用场景,适用于学术研究和特定商业用途。这一开源项目由面壁智能与清华大学自然语言处理实验室联合开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号