Project Icon

MInference

动态稀疏注意力加速长上下文语言模型

MInference是一项新技术,通过利用长上下文语言模型注意力机制的动态稀疏性来加速预填充过程。该技术离线确定注意力头的稀疏模式,在线近似稀疏索引,并使用优化内核动态计算注意力。在A100 GPU上,MInference实现了预填充速度提升10倍,同时保持模型准确性。它支持LLaMA-3、GLM-4等多种长上下文模型,有效处理百万级别token的上下文。

PowerInfer - 消费级GPU上大型语言模型高效推理引擎
GPU加速GithubPowerInfer大语言模型局部性设计开源项目混合CPU/GPU使用
PowerInfer是一款在个人电脑上针对消费级GPU设计的高效大型语言模型(LLM)推理引擎。它结合激活局部性原理和CPU/GPU混合技术,通过优化热/冷激活神经元的处理方式,显著提高推理速度并降低资源消耗。软件还融入了适应性预测器和神经元感知技术,优化了推理效率和精度,支持快速、低延迟的本地模型部署。
flashinfer - 专注LLM服务的高效GPU内核库
FlashInferGPU内核GithubLLM服务开源项目注意力机制高性能计算
FlashInfer是一个面向大型语言模型(LLM)服务和推理的GPU内核库。它实现了多种注意力机制,如FlashAttention、SparseAttention和PageAttention。通过优化共享前缀批处理解码和压缩KV缓存等技术,FlashInfer提高了LLM推理效率。该项目兼容PyTorch、TVM和C++,便于集成到现有系统,适用于多种LLM应用场景。
InfLLM - 优化大规模语言模型处理超长序列的无训练记忆方法
GithubInfLLM大语言模型开源项目训练无关方法记忆单元长序列处理
InfLLM是一种新型无训练记忆方法,可有效处理超长序列。通过将远程上下文存储在额外的存储单元中并采用高效机制进行注意力计算,InfLLM在保持长距离依赖捕捉能力的同时,提高了处理效率。即使在序列长度达到1,024K的情况下,InfLLM仍表现优越,无需连续训练即可超越许多基线模型。
inferflow - 为大语言模型提供高效灵活的推理解决方案
GithubInferflow大语言模型开源项目推理引擎模型服务量化
Inferflow是一款功能强大的大语言模型推理引擎,支持多种文件格式和网络结构。它采用3.5位量化和混合并行推理等创新技术,提高了推理效率。用户通过修改配置文件即可部署新模型,无需编写代码。Inferflow支持GPU/CPU混合推理,为模型部署提供灵活选择。该项目为研究人员和开发者提供了高效易用的LLM推理工具。
InferLLM - 轻量化语言模型推理框架,兼容多种模型格式和设备
GithubInferLLMllama.cpp多模型兼容开源项目模型推理高效率
InferLLM 是一个高效简洁的语言模型推理框架,源于 llama.cpp 项目。主要特点包括结构简单、高性能、易于上手,并支持多模型格式。目前兼容 CPU 和 GPU,可优化 Arm、x86、CUDA 和 riscv-vector,并支持移动设备部署。InferLLM 引入了专有 KVstorage 类型以简化缓存和管理,适合多种应用场景。最新支持的模型包括 LLama-2-7B、ChatGLM、Alpaca 等。
dash-infer - 面向x86和ARMv9的高性能大语言模型推理引擎
CPU优化DashInferGithubLLM推理开源项目模型量化高性能计算
DashInfer是一款针对x86和ARMv9硬件架构优化的C++推理引擎,支持连续批处理和NUMA感知功能。该引擎可充分发挥现代服务器CPU性能,支持推理参数规模达14B的大语言模型。DashInfer采用轻量架构,提供高精度推理和标准LLM推理技术,兼容主流开源大语言模型,并集成了量化加速和优化计算内核等功能。
streaming-llm - 突破输入长度限制的流式语言模型框架
AI对话GithubStreamingLLM开源项目无限长度输入注意力机制语言模型
StreamingLLM是一个创新框架,使大型语言模型能处理超长输入序列。它通过注意力汇聚点技术解决了长文本处理的内存和性能问题,无需额外微调。在多轮对话等流式应用中,StreamingLLM比基线方法速度提升最高22.2倍。该技术已被多个知名项目采用,为语言模型的实际应用开辟了新途径。
SwiftInfer - AI 推理和服务
GithubStreaming-LLMSwiftInferTensorRT-LLM开源项目推理性能长文本模型
SwiftInfer 采用基于 TensorRT 的 Streaming-LLM 技术,提升长文本输入处理的有效性。借助 Attention Sink 技术,避免模型在注意力窗口变动时发生故障,确保在生产环境中的高效运行,非常适合对推理效率和稳定性要求高的大模型应用。
LookaheadDecoding - 创新并行算法加速大型语言模型推理
GithubJacobi迭代LLMLookahead Decoding并行解码开源项目推理加速
LookaheadDecoding项目开发了一种创新的并行解码算法,旨在加速大型语言模型(LLM)的推理过程。该方法不依赖草稿模型或数据存储,而是结合Jacobi迭代和n-gram缓存技术,有效减少解码步骤。实验结果显示,在多个数据集上可将延迟降低1.5到2.3倍。项目提供便捷的安装和使用方式,并支持FlashAttention技术,可广泛应用于各类LLM场景。
speculative-decoding - 推测解码技术,优化大型语言模型推理速度
GithubSpeculative Decoding大语言模型开源项目性能优化推理加速自然语言处理
该开源项目聚焦于推测解码技术的研究与实现,旨在提升大型语言模型的文本生成效率。项目涵盖了多种推测解码策略,包括提前退出、推测采样和先知变压器。同时,项目致力于优化批处理推测解码,以增强整体性能。研究计划还包括对比不同策略的效果,并探索微观优化方法。这些工作为加快AI模型推理速度提供了新的技术思路。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号