Project Icon

mup

大规模神经网络的稳定超参数优化方法

Maximal Update Parametrization (μP) 提供了一种适用于大规模神经网络的稳定超参数优化方法,例如预训练的Transformer等。利用μP,模型的超参数在不同大小的网络中可保持稳定,减少了在探索和扩展过程中的不确定性和脆弱性。该工具包简化了在PyTorch模型中实现μP的流程,是优化和调优深度学习模型的强大工具。

mmengine - 深度学习训练引擎支持大规模模型训练和多种策略
GithubMMEngineOpenMMLabPyTorch开源项目深度学习训练引擎
MMEngine是基于PyTorch的深度学习模型训练基础库,作为OpenMMLab代码库的训练引擎。它集成主流大规模模型训练框架,支持混合精度训练等多种策略,提供友好的配置系统和主流监控平台支持。MMEngine不仅适用于OpenMMLab项目,还可广泛应用于其他深度学习项目。
DiT-MoE - 16亿参数规模的稀疏化扩散Transformer模型
DiT-MoEGithub图像生成开源项目扩散模型深度学习混合专家
DiT-MoE项目采用混合专家模型,将扩散Transformer扩展至16亿参数规模。作为扩散Transformer的稀疏版本,DiT-MoE在保持与密集网络相当性能的同时,实现了高效的推理。项目提供PyTorch实现、预训练权重和训练/采样代码,并包含专家路由分析和Hugging Face检查点。通过混合专家方法,DiT-MoE在模型扩展和推理优化方面展现出显著优势。
Awesome_Matching_Pretraining_Transfering - 多模态模型、参数高效微调及视觉语言预训练研究进展汇总
Github参数高效微调图像文本匹配多模态模型大型模型开源项目视觉语言预训练
该项目汇总了多模态模型、参数高效微调、视觉语言预训练和图像-文本匹配领域的研究进展。内容涵盖大语言模型、视频多模态模型等多个方向,定期更新最新论文和资源。项目为相关领域的研究人员和开发者提供了系统的学习参考。
mpt-7b - 高性能开源大语言模型
GithubHuggingfaceMPT-7B大语言模型开源开源项目模型深度学习自然语言处理
MPT-7B是一个开源大语言模型,在1万亿英文文本和代码上预训练。其改进的Transformer架构支持高效训练和推理,可处理超长输入。模型采用ALiBi技术处理长序列,无需位置嵌入。MPT-7B支持商业使用,为开发者提供了适用于多种下游任务微调的强大基础模型。
model_optimization - 开源神经网络模型压缩与优化工具集
GithubMCTModel Compression Toolkit开源项目模型压缩神经网络优化量化
Model Compression Toolkit (MCT)是一个专注于神经网络模型优化的开源项目,旨在满足高效硬件约束下的部署需求。MCT提供多种量化方法,包括训练后量化和基于梯度的训练后量化,同时支持数据生成和结构化剪枝等功能。此工具集还具备针对特定目标平台的优化能力,为研究人员和开发者提供了全面的模型压缩解决方案。
Awesome-Parameter-Efficient-Transfer-Learning - 精选计算机视觉和多模态领域的高效参数迁移学习论文
AdapterComputer VisionGithubMultimodalParameter-Efficient Transfer LearningPrompt开源项目
本项目收录了关于计算机视觉和多模态领域的高效参数迁移学习的优秀论文。参数高效迁移学习通过修改尽可能少的参数,使得大规模预训练模型能够更好地适应各种下游任务,降低全微调带来的过拟合风险和高成本。内容包括Prompt、Adapter和Unified等方法的研究论文,是学术研究与应用开发的理想参考资源。
offsite-tuning - 隐私保护的高效模型微调框架
GithubOffsite-Tuning基础模型开源项目效率提升迁移学习隐私保护
Offsite-Tuning是一种迁移学习框架,允许在不完全访问原始模型的情况下对大型基础模型进行微调。该方法使用轻量级适配器和压缩仿真器,保护模型所有者和数据所有者的隐私,同时提高计算效率。与传统全模型微调相比,Offsite-Tuning保持相当准确性,同时实现6.5倍速度提升和5.6倍内存减少,适用于大规模语言和视觉模型。
tdmpc2 - 跨领域连续控制的可扩展世界模型
GithubTD-MPC2多任务学习开源项目强化学习模型训练连续控制
TD-MPC2是一种可扩展的基于模型的强化学习算法,在104个连续控制任务中展现出色性能。该算法使用317M参数的单一模型可执行80个跨领域任务。项目提供300多个模型检查点和多任务数据集,支持状态和像素输入,为模型强化学习研究提供重要资源。
mlops-python-package - MLOps Python工具包,简化机器学习工程实践
GitHub ActionsGithubMLOpsPython包开源项目自动化工具软件开发实践
这是一个集成多种MLOps最佳实践的Python代码库,旨在优化机器学习工程流程。该工具包提供了模型注册、实验跟踪和实时推理等核心功能,同时支持自动化任务、CI/CD集成、配置管理和数据处理等辅助功能。通过灵活且稳健的设计,这个工具包可以帮助开发者更高效地构建和部署MLOps项目,简化整个机器学习生命周期管理。
MiniCPM-V-2_6-GGUF - 使用imatrix量化优化模型性能
GithubHuggingfaceMiniCPM-V-2_6transformers多语言开源项目模型视觉处理量化
项目应用llama.cpp的imatrix量化方法,优化模型的文本性能。提供多种量化文件,适配不同硬件配置,尤其适合低RAM环境。这一技术允许根据系统RAM和GPU VRAM选择合适的模型,实现性能与速度的平衡。支持多模态图像-文本转换和多语言处理,可在LM Studio中运行,为开源社区提供多样化的工具和使用选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号