Project Icon

mup

大规模神经网络的稳定超参数优化方法

Maximal Update Parametrization (μP) 提供了一种适用于大规模神经网络的稳定超参数优化方法,例如预训练的Transformer等。利用μP,模型的超参数在不同大小的网络中可保持稳定,减少了在探索和扩展过程中的不确定性和脆弱性。该工具包简化了在PyTorch模型中实现μP的流程,是优化和调优深度学习模型的强大工具。

hardware-aware-transformers - 瞄准多硬件平台优化的自然语言处理Transformer模型
GithubHATNLPPyTorchTransformer开源项目硬件感知
HAT项目提供基于PyTorch的硬件感知Transformer,模型大小减小至原来的3.7倍,且性能无损。通过SuperTransformer搜索优化的SubTransformer,大幅降低搜索成本,并在不同硬件平台例如Raspberry Pi和Intel Xeon上实现显著加速。支持多种机器翻译任务,并提供预处理数据和预训练模型的直接下载。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
sparseml - 神经网络优化工具,简化代码实现高效稀疏模型
GithubSparseML开源项目推理优化模型优化神经网络稀疏化
SparseML是开源模型压缩工具包,使用剪枝、量化和蒸馏算法优化推理稀疏模型。可导出到ONNX,并与DeepSparse结合,在CPU上实现GPU级性能。适用于稀疏迁移学习和从零开始的稀疏化,兼容主流NLP和CV模型,如BERT、YOLOv5和ResNet-50,实现推理速度和模型大小的显著优化。
ktransformers - 体验前沿LLM推理优化的灵活框架
GPU加速GithubKTransformersLLM推理优化大型语言模型开源项目深度学习框架
KTransformers是一个灵活的Python框架,通过高级内核优化和并行策略增强Transformers性能。框架支持单行代码注入优化模块,提供Transformers兼容接口、OpenAI和Ollama标准RESTful API及简化的ChatGPT风格Web UI。专注本地部署和异构计算优化,KTransformers集成Llamafile和Marlin内核,为LLM推理优化实验提供灵活平台。
ul2 - 融合多种预训练范式的通用语言模型
GithubHuggingfaceUL2开源项目模型模式切换混合去噪自然语言处理预训练模型
UL2是一个创新的语言模型框架,采用混合去噪器(MoD)预训练目标,融合多种预训练范式并引入模式切换机制。该模型在C4语料库上进行200亿参数规模的预训练,并在多个数据集上微调后,在50个涵盖语言生成、理解和推理等领域的NLP任务中达到了领先水平。UL2在少样本学习方面表现突出,零样本SuperGLUE任务上超越了更大规模的GPT-3模型。
CTranslate2 - 高效的Transformer模型推理库,提供多种性能优化方案
CTranslate2Github并行执行开源项目性能优化模型压缩转换器模型
CTranslate2是一个用于Transformer模型高效推理的C++和Python库,通过权重量化、层融合、批次重排序等技术,显著提升CPU和GPU上的执行速度并减少内存占用。支持多种模型类型,包括编码器-解码器、仅解码器和仅编码器模型,兼容OpenNMT-py、OpenNMT-tf、Fairseq等框架。其主要特点包括自动CPU检测、代码分发、并行和异步执行以及动态内存使用。
SimpleTuner - AI模型训练优化脚本集 SimpleTuner
AI模型GithubSimpleTuner开源项目机器学习深度学习训练优化
SimpleTuner是一个开源的AI模型训练优化脚本集。它以简单易用为设计理念,支持多GPU训练、方面比例分桶等功能。适用于Flux、PixArt Sigma和Stable Diffusion等多种AI模型的训练。项目提供详细教程和快速入门指南,适合各级用户。作为开源平台,SimpleTuner鼓励学术交流和代码贡献。
Megatron-DeepSpeed - 分布式训练框架助力大规模语言模型预训练
DeepSpeed配置GPT预训练GithubMegatron-DeepSpeed分布式训练开源项目预处理数据
Megatron-DeepSpeed是一个集成DeepSpeed的大规模语言模型预训练框架。它支持多GPU和多节点分布式训练,提供数据预处理、预训练、微调和下游任务评估等完整流程。该框架针对BERT、GPT等模型优化,实现高效大规模训练。集成DeepSpeed的流水线并行和ZeRO-DP技术,进一步提升训练效率和灵活性。
MS-AMP - Microsoft自动混合精度深度学习工具包
FP8-LMGithubMS-AMPMicrosoft开源项目深度学习混合精度
MS-AMP是由微软开发的自动混合精度工具包,专为深度学习设计。最新版本v0.4.0已发布,详细信息可通过aka.ms/msamp/doc查看。此工具包显著提高人工智能模型训练效率,特别是在FP8大模型训练中表现突出。项目可能包含商标或标志,需遵循微软的商标和品牌使用指南。
optuna - 自动化机器学习超参数优化框架
GithubOptunaPython开源框架开源项目机器学习超参数优化
Optuna是一个面向机器学习的开源超参数优化框架。它采用define-by-run风格API,特点是轻量级、通用性强和平台无关。Optuna支持Python式搜索空间定义、高效优化算法、易于并行化和快速可视化。框架可处理多目标优化、约束优化和分布式优化等任务,适用于Python 3.7+版本,并集成多个第三方库。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号