Project Icon

boxmot

BoxMOT:支持分割、目标检测和姿态估计的多对象跟踪模块

BoxMOT项目提供可插拔的多对象跟踪模块,支持分割、目标检测和姿态估计。提供适用于各种硬件配置的跟踪方法,包括CPU和GPU。兼容多种ReID模型及Yolov8、Yolo-NAS、YOLOX等目标检测模型,并通过快速实验脚本提高实验效率。

multispectral-object-detection - 多光谱图像融合的高效目标检测方法
GithubTransformerYOLOv5多光谱目标检测开源项目计算机视觉跨模态融合
该项目提出了Cross-Modality Fusion Transformer (CFT)多光谱目标检测方法,利用Transformer架构融合RGB和热红外图像信息。CFT在FLIR、LLVIP等数据集上取得了优秀的检测结果,尤其在夜间场景表现突出。这为多光谱目标检测提供了一种新的解决方案。
SportsLabKit - 专业体育分析工具包 实现比赛视频数据化
GithubSportsLabKit体育分析开源项目数据处理目标跟踪计算机视觉
SportsLabKit是一个开源的体育分析工具包,可将比赛视频转换为可分析的数据。目前主要用于足球领域,计划扩展到其他运动。核心功能包括高性能追踪、灵活架构、2D场地校准和数据封装,便于进行运动员追踪和数据分析。该项目集成了SORT、DeepSORT、ByteTrack等多种追踪算法,支持YOLOv8等检测模型,为研究人员和开发者提供了灵活的开发环境。SportsLabKit正在持续开发中,旨在提供更多计算机视觉工具和统一的数据表示方法。
MotionLLM - 融合视频和动作数据的人类行为理解先进AI模型
GithubMotionLLM人工智能人类行为理解多模态学习大语言模型开源项目
MotionLLM是一个人类行为理解框架,通过融合视频和动作序列数据来分析人类行为。该项目采用统一的视频-动作训练策略,结合粗粒度视频-文本和细粒度动作-文本数据,以获得深入的时空洞察。项目还包括MoVid数据集和MoVid-Bench评估工具,用于研究和评估人类行为理解。MotionLLM在行为描述、时空理解和推理方面展现出优越性能,为人机交互和行为分析研究提供了新的方向。
OpenTAD - 多功能时序动作检测工具箱支持多数据集和前沿方法
GithubOpenTADPyTorch开源工具箱开源项目时序动作检测计算机视觉
OpenTAD是一个基于PyTorch的开源时序动作检测工具箱,支持9个TAD数据集。其模块化设计便于复现现有方法和实现新方法,支持基于特征和端到端的训练模式。该项目提供多种预提取特征,实现了多个前沿TAD方法,并在EPIC-KITCHENS-100和Ego4D 2024挑战赛中表现出色。
OpenSeeFace - 基于MobileNetV3的面部特征点检测,支持多种动画模型
GithubOpenSeeFaceUnityVRMVSeeFace人脸跟踪开源项目
OpenSeeFace基于MobileNetV3进行面部特征点检测,通过ONNX优化提高了在Windows平台的推理速度,实现每秒30-60帧的单人面部跟踪。该项目提供多种模型选择,结合速度与跟踪质量,可在Unity等平台上动画化VRM和Live2D模型,支持眼睛眨动检测和面部表情识别。项目在低光和高噪声环境下表现优异,适用于多种动画和实时应用场景,并提供详细示例和自定义命令。
UltimateLabeling - 集成先进检测和跟踪技术的多功能视频标注工具
GithubOpenPifPafPyQt5UltimateLabelingYOLO开源项目视频标注
UltimateLabeling是一个基于Python的多功能视频标注工具,使用PyQt5开发,集成了前沿的对象检测和跟踪技术。主要功能包括通过SSH连接远程GPU服务器、使用YOLO和OpenPifPaf进行对象和姿态检测、采用匈牙利算法进行轨迹分配、进行SiamMask视觉对象追踪,以及视频缩放、可调节边框和骨架等。适用于多种对象和姿态检测与标注场景。
VNext - 高级视频实例分割框架,支持在线和离线模式
GithubIDOLInstMoveSeqFormerVNext开源项目视频实例分割
VNext是一个基于Detectron2的视频实例识别框架,提供先进的在线和离线实例分割算法及对象中心的视频分割运动模型。用户可参考官方教程进行安装、训练和评估。最新算法InstMove、IDOL和SeqFormer在国际会议上获得认可并取得优异成绩。
fast-reid - 重识别方法和工具箱
FastReIDGithubPyTorch人脸识别开源项目模型转化重识别
FastReID是一个研究平台,实现了先进的实例重识别算法,重新编写前一版本(reid strong baseline)而来。该平台支持图像检索和人脸识别等多项任务,具备自动混合精度训练、多GPU分布式训练、模型蒸馏等功能,支持多种骨干网络结构和多个数据集的同时测试。新更新包括支持DG-ReID和Vision Transformer骨干网络。更多信息请参考官方文档。
yolov5m-license-plate - 车牌检测的YOLOv5模型支持Pytorch适用于多种视觉任务
GithubHuggingfacePyTorchYOLOv5开源项目模型深度学习目标检测车牌识别
YOLOv5m-license-plate项目提供基于YOLOv5技术的车牌检测模型,利用Pytorch进行对象检测,适用于多种计算机视觉任务。开发者可运用简单的Python代码实现精准车牌识别,并支持通过自定义数据集进行微调以提升效果。在keremberke数据集上的精度高达0.988,适合快速、可靠的车牌检测应用。访问项目主页获取更多信息和下载。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号