Project Icon

efficientvit

EfficientViT多尺度线性注意力用于高分辨率密集预测

EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。

vit_small_patch16_384.augreg_in21k_ft_in1k - 增强的视觉转换器模型及其在图像分类中的应用
GithubHuggingfaceImageNetPyTorchVision Transformer图像分类开源项目数据增强模型
ViT图像分类模型结合增强与正则化技术,基于ImageNet-21k训练后在ImageNet-1k微调。模型通过JAX进行训练并移植至PyTorch,拥有22.2M参数和384x384图像输入,展示了12.4 GMACs的高效性。适用于图像分类与特征提取,在视觉识别和嵌入生成中表现出色。
vivit-b-16x2-kinetics400 - ViViT 扩展Vision Transformer至视频分析领域的创新模型
GithubHuggingfaceViViT开源项目模型深度学习视觉变换器视频分类计算机视觉
ViViT是Arnab等人提出的视频视觉Transformer模型,将Vision Transformer的概念扩展到视频领域。这一模型主要应用于视频分类等任务的微调,在视频数据处理方面表现出色。ViViT为视频分析和理解开辟了新途径,为研究人员和开发者提供了进行视频相关任务开发的有力工具。该模型的出现推动了计算机视觉技术在视频领域的发展,为未来的视频智能分析奠定了基础。
vit_giant_patch14_dinov2.lvd142m - 基于Vision Transformer的无监督视觉特征提取模型
DINOv2GithubHuggingfaceVision Transformer图像分类图像特征提取开源项目模型自监督学习
该项目介绍了使用DINOv2方法的Vision Transformer(ViT)模型,通过无监督学习在LVD-142M数据集上进行预训练。这一模型适用于图像分类和嵌入,帮助提取稳健的视觉特征以及实现高效的图像识别。ViT模型的参数量为1136.5M和1784.2 GMACs,显现出其出色的性能和灵活性。用户可以在GitHub查看和下载该模型的代码和更多资源。
mobilevitv2-1.0-imagenet1k-256 - MobileViTv2中的可分离自注意力实现高效图像分类
GithubHuggingfaceImageNetMobileViTv2PyTorch分离自注意力图像分类开源项目模型
MobileViTv2是一个图像分类模型,通过引入可分离自注意力机制,提升计算效率与性能。该模型在ImageNet-1k数据集上预训练,适用于大规模图像分类任务,并支持PyTorch平台。用户可使用此模型进行未处理图像的分类,或寻找适合特定任务的微调版本,为图像识别应用带来优化。
vit-huge-patch14-224-in21k - 大型视觉Transformer模型实现高效图像识别与特征提取
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习预训练模型
vit-huge-patch14-224-in21k是基于ImageNet-21k数据集预训练的大型视觉Transformer模型。它将图像分割为固定大小的块,通过Transformer编码器处理,可用于图像分类等多种计算机视觉任务。该模型提供了强大的图像特征提取能力,适用于各类下游视觉应用。
vit-small-patch16-224 - Google开发的轻量级视觉Transformer模型用于高效图像分类
GithubHuggingfaceImageNetVision Transformerpytorch-image-modelssafetensors图像分类开源项目模型
vit-small-patch16-224是Google开发的轻量级视觉Transformer模型,针对高效图像分类任务进行了优化。该模型由社区成员从timm仓库转换并上传至Hugging Face平台。它与ViT-base模型具有相同的使用方式,特别适合计算资源有限的应用场景。模型在ImageNet数据集上经过训练,可用于各种计算机视觉任务,如图像识别和分类。相比ViT-base,它具有更小的模型尺寸和更快的推理速度,同时保持了良好的性能表现。需要注意的是,模型的safetensors版本要求torch 2.0或更高版本的运行环境。
vit_tiny_patch16_224.augreg_in21k_ft_in1k - 基于ViT架构的轻量级图像分类与特征提取模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型特征提取
vit_tiny_patch16_224.augreg_in21k_ft_in1k是一个轻量级Vision Transformer模型,专为图像分类和特征提取而设计。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了增强的数据增强和正则化技术。它拥有570万参数,能处理224x224尺寸的图像,在保持高效性能的同时提供准确的视觉分析能力。
Open-MAGVIT2 - 自回归视觉生成新突破 大幅提升图像分词性能
GithubOpen-MAGVIT2图像分词器大规模词表开源项目自回归模型视觉生成
Open-MAGVIT2是一个创新的自回归视觉生成项目,采用无查找技术和262144大小的码本,克服了VQGAN的局限性。该项目用PyTorch重新实现MAGVIT2分词器,在图像分词方面取得显著进展,8倍下采样时rFID达到0.39。项目致力于推动自回归视觉生成领域发展,目前处于积极开发阶段,未来计划拓展至视频生成领域。
ViTAE-Transformer-Remote-Sensing - 遥感图像解释的视觉变压器模型集合
Github图像分割开源项目深度学习目标检测计算机视觉遥感
ViTAE-Transformer-Remote-Sensing项目致力于遥感图像解释领域的视觉变压器模型研究。该项目涵盖遥感预训练、场景识别、语义分割和目标检测等多项任务,提出了RVSA和MTP等创新模型架构和训练方法。项目还开发了SAMRS大规模遥感分割数据集。这些成果有助于推进遥感基础模型的发展,为遥感应用提供技术支持。项目成果包括遥感预训练研究、场景识别模型、语义分割技术和目标检测算法。RVSA和MTP等创新架构提升了模型性能和效率。SAMRS数据集的开发为遥感分割任务提供了大规模训练资源。
vitmatte-small-composition-1k - Vision Transformer驱动的先进图像抠图模型
GithubHuggingfaceViTMatte图像抠图开源项目模型深度学习视觉transformer计算机视觉
ViTMatte-small-composition-1k模型采用Vision Transformer技术,为图像抠图任务带来突破性进展。其简洁有效的结构设计,结合Composition-1k数据集的训练,实现了高精度的前景对象分割。该开源项目不仅为研究人员提供了直接可用的工具,还通过Hugging Face平台支持进一步的模型优化,推动了计算机视觉技术的发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号