Project Icon

efficientvit

EfficientViT多尺度线性注意力用于高分辨率密集预测

EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。

magvit - 单模型实现多种视频合成任务的创新技术
GithubMAGVIT开源项目机器学习深度学习视频生成计算机视觉
MAGVIT是一种创新的视频生成技术,采用掩码生成视频变换器实现单一模型解决多种视频合成任务。该项目在视频生成质量、效率和灵活性方面表现出色,能够执行类别条件生成、帧预测和多任务视频处理。MAGVIT在UCF-101、BAIR Robot Pushing、Kinetics-600等多个基准测试中取得优异成绩,展示了其在视频生成领域的应用前景。
vit-large-patch16-224-in21k - 基于ImageNet-21k预训练的大型Vision Transformer模型
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型计算机视觉预训练模型
该模型是在ImageNet-21k数据集(1400万图像,21843类别)上预训练的大型Vision Transformer (ViT)。它采用Transformer架构,将224x224分辨率的图像分割成16x16的patch序列进行处理。模型可提取强大的图像特征,适用于分类等多种下游视觉任务。用户可直接用于图像嵌入或在特定任务上微调。
depth_anything_vits14 - 大规模无标签数据训练的开源深度估计工具
Depth AnythingGithubHuggingface图像处理开源项目模型深度估计深度感知计算机视觉
Depth Anything是一个基于ViT-L/14架构的深度估计模型,通过大规模无标签数据训练。模型提供Python接口,支持518x518分辨率的图像深度估计,具备良好的泛化能力。采用模块化设计,支持自定义图像预处理和批量处理功能,可集成到现有项目中。研究人员和开发者可通过Hugging Face平台快速部署使用。
vit_large_patch14_clip_224.openai_ft_in12k_in1k - 视觉变压器用于图像分类和特征嵌入的高级应用
CLIPGithubHuggingfaceVision TransformerWIT-400M图像分类开源项目模型模型比较
OpenAI开发的视觉变压器(ViT)模型在WIT-400M图像文本对上通过CLIP进行预训练,并在ImageNet-12k和ImageNet-1k上微调,适用于图像分类与特征嵌入生成。模型运行在timm库中,具有高参数量与计算效率,适用于高精度图像识别,支持实时与批量处理应用。
sam-vit-large - 高性能AI图像分割模型 多种输入方式生成精确物体遮罩
GithubHuggingfaceSegment Anything Model图像分割开源项目模型深度学习计算机视觉零样本学习
sam-vit-large是Segment Anything Model (SAM)的一个版本,由Facebook开发。这是一个先进的计算机视觉模型,可根据点、框等输入生成高精度物体遮罩。经过1100万图像和11亿遮罩的训练,该模型展现出优秀的零样本性能。它能自动生成图像中所有物体的遮罩,适用于多种图像分割任务,为计算机视觉研究提供了新的基础工具。
vit_tiny_patch16_224.augreg_in21k - 增强与正则化的ViT图像分类模型
GithubHuggingfaceImageNet-21kVision Transformer图像分类开源项目数据增强模型特征骨干
这是一个高效的Vision Transformer(ViT)图像分类模型,经过增强和正则化,在ImageNet-21k上进行了训练。由论文作者在JAX中开发,并由Ross Wightman移植到PyTorch。模型的类型包括图像分类和特征提取,参数量为9.7百万,1.1 GMACs,处理图像尺寸为224x224。项目中有图像分类和嵌入的代码示例,以及支持特定数据转换的功能,提升模型性能。该模型适用于高效图像识别应用,并提供开发者比较参考的方法。
vit_base_patch16_224.dino - 自监督训练的ViT模型实现高效图像特征提取
DINOGithubHuggingfaceVision Transformer图像分类开源项目模型特征提取自监督学习
vit_base_patch16_224.dino是一个基于Vision Transformer架构的图像特征提取模型。该模型采用自监督DINO方法在ImageNet-1k数据集上预训练,可用于图像分类和特征提取。模型包含8580万参数,支持224x224像素的输入图像。通过timm库,研究人员可以便捷地将其应用于多种计算机视觉任务,深入探索自监督学习在视觉领域的潜力。
ViT-B-32__openai - CLIP模型的ONNX导出版本用于图像和文本嵌入生成
CLIPGithubHuggingfaceImmich图像编码器开源项目文本编码器模型自托管照片库
ViT-B-32__openai项目是CLIP模型的ONNX导出版本,将视觉和文本编码器分离为独立模型。这种设计适用于生成图像和文本嵌入,特别针对Immich自托管照片库。该项目可用于处理大量图像和文本数据,有助于改进图像检索和跨模态搜索功能。
magvit2-pytorch - MagViT2视频生成和理解模型的PyTorch开源实现
AI模型GithubMagViT2Pytorch实现开源项目视频生成语言模型
MagViT2是基于语言模型的最新视频生成和理解技术。该PyTorch实现提供高效视频标记器和训练器,支持大规模数据集。项目包含无查找量化器,适用于多种模态。灵活架构设计允许自定义层和注意力机制,为研究人员提供探索和改进视频生成技术的工具。
DUSt3R_ViTLarge_BaseDecoder_512_dpt - ViT架构的多分辨率3D几何视觉模型用于深度估计
DUSt3RGithubHuggingface三维视觉图像处理开源项目模型深度学习计算机视觉
该模型使用ViT-Large编码器和ViT-Base解码器构建,采用DPT结构设计。支持处理512x384至512x160等多种分辨率图像,为3D几何视觉提供简化实现方案。开发者可通过PyTorch快速部署使用,模型由NAVER开源并遵循CC BY-NC-SA 4.0许可协议。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号