Project Icon

flatformer

优化点云变换器性能

FlatFormer是一种新型点云变换器算法,采用扁平化窗口注意力机制提高处理效率。在Waymo开放数据集上,它实现了领先的精度,并比现有方法快4.6倍。FlatFormer首次在边缘GPU上达到实时性能,为自动驾驶等对延迟敏感的应用开辟新途径。该算法通过平衡空间邻近性和计算规律性,减少了结构化和填充开销。

mask2former-swin-small-coco-instance - 基于Transformer架构的统一图像分割框架
GithubHuggingfaceMask2Former图像分割开源项目机器视觉模型模型训练语义识别
Mask2Former是一个基于COCO数据集的图像分割模型,采用Swin-Small作为基础架构。通过统一的掩码预测方法实现实例、语义和全景分割功能。该模型创新性地结合多尺度可变形注意力机制和掩码注意力技术,优化了计算效率。采用子采样点损失计算策略,使训练过程更加高效。
stable-fast-3d - 通过单图生成低多边形UV贴图3D模型的高速大规模重建技术
GithubHuggingfaceStability AIStable Fast 3D企业许可图像到3D安全措施开源项目模型
Stable Fast 3D是由Stability AI开发的一种利用Transformer架构的图像到3D转换模型,能够通过512x512像素的单幅图像快速生成低多边形贴图的3D模型。这些模型适用于游戏引擎和渲染等应用环境,广泛应用于艺术创作、教育工具和设计流程。模型基于Objaverse数据集进行训练,为年收入低于100万美元的用户提供Community License下的免费商业使用权限,而超过此收入的商业用户需申请企业许可。
oneformer_ade20k_swin_large - OneFormer 多任务通用图像分割模型
GithubHuggingfaceOneFormer全景分割图像分割实例分割开源项目模型语义分割
OneFormer是一个基于ADE20k数据集和Swin大型骨干网络训练的通用图像分割框架。它通过单一模型和单次训练,实现了语义、实例和全景分割多任务处理,性能超越现有专用模型。该模型采用任务令牌技术,实现了训练时的任务引导和推理时的任务动态适应。OneFormer为图像分割领域带来了新的解决方案,可应用于多种图像分割任务。
mit-b2 - 高效语义分割的简单Transformer设计
GithubHuggingfaceSegFormerTransformer图像分类开源项目机器学习模型语义分割
SegFormer b2是一个在ImageNet-1k上预训练的编码器模型,采用分层Transformer结构。该模型专为语义分割任务设计,结合了简单高效的架构和出色的性能。虽然此版本仅包含预训练的编码器部分,但它为图像分类和语义分割的微调提供了坚实基础。SegFormer的创新设计使其在多个计算机视觉任务中展现出强大潜力。
gmflow - 利用全球匹配提高光流估计的准确性与效率
GMFlowGithub光流估计全局匹配开源项目高效率高精度
GMFlow将光流重新定义为全球匹配问题,简化了光流估计流程。它提供灵活的模块化设计,可以轻松构建定制模型,并在高端GPU上显著加速。该项目在Sintel基准测试中表现出高准确性和效率,预训练模型适用于FlyingChairs、FlyingThings3D和KITTI等数据集。新更新扩展了GMFlow至立体和深度任务,并提供更多速度和准确性的选择。
torch-points3d - 用于在点云上进行深度学习的 Pytorch 框架
CUDAGithubPyTorchtorch-points3d开源项目深度学习点云分析
一个用于点云分析的深度学习框架,基于Pytorch Geometric和Facebook Hydra。该框架支持构建复杂模型并提供高层次API,支持PointNet、PointNet++、RSConv等常见模型,便捷实现分类、分割和检测任务。推荐使用Docker安装以确保兼容性。了解更多信息,请查阅文档和示例笔记本。
tetra-nerf - 四面体表示法提升神经辐射场渲染效率
3D渲染GithubTetra-NeRF四面体表示开源项目神经辐射场计算机视觉
Tetra-NeRF是一种创新的神经辐射场表示方法,通过四面体结构提高渲染效率和质量。该方法将输入点云三角化为四面体集合,使用重心插值和浅层MLP进行体积渲染。在Blender、Tanks and Temples及Mip-NeRF 360等数据集上表现出色。项目提供完整实现代码、预训练模型和详细使用说明,便于研究人员复现和拓展。
gta - 几何感知注意力机制增强多视图Transformer性能
GTAGithub几何感知注意力多视图Transformer开源项目神经渲染计算机视觉
GTA是一种创新的几何感知注意力机制,旨在提升多视图Transformer的表达能力。这项技术不仅适用于新视角合成和3D场景重建等多视图任务,还可应用于图像生成等2D任务。项目提供了GTA在CLEVR-TR和MSN-Hard数据集上的官方实现代码,并展示了其在ImageNet图像生成中的应用。通过整合几何信息,GTA使Transformer更有效地处理3D空间关系,从而显著提高多视图任务的性能表现。
FasterTransformer4CodeFuse - 优化的CodeFuse模型推理引擎 高性能支持
CodeFuseFasterTransformerGithub开源项目性能优化模型推理量化
FasterTransformer4CodeFuse是一个针对蚂蚁集团CodeFuse模型的优化推理引擎。它实现了Int8量化、流式输出和快速模型加载,同时改进了提示词处理并提供Python API。项目还支持多GPU tensor并行推理,并提供了详细的性能数据。相比原始FasterTransformer,该项目更适合需要高效推理CodeFuse模型的开发者和研究人员,能够显著提升性能和使用体验。对于寻求高效CodeFuse模型部署方案的团队,这是一个值得考虑的开源选择。
mask2former-swin-tiny-coco-instance - Mask2Former模型:统一处理实例、语义和全景图像分割
GithubHuggingfaceMask2Former图像分割实例分割开源项目模型深度学习计算机视觉
Mask2Former是一个先进的图像分割模型,基于Swin骨干网络在COCO数据集上训练。它采用统一的方法处理实例、语义和全景分割任务,通过预测掩码和标签来完成分割。该模型引入多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率上超越了先前的MaskFormer模型。Mask2Former提供了简单的使用方法和代码示例,方便研究人员和开发者在图像分割领域进行应用和研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号