Project Icon

PoseFix_RELEASE

模块化设计的人体姿态优化工具

PoseFix是一个模块化设计的人体姿态优化工具,通过精炼现有的姿态估计结果来提升精度。此项目提供了完整的TensorFlow实现,兼容多个公开的2D多人物姿态数据集,如MPII、PoseTrack 2018和MS COCO 2017。用户只需使用简单的.json文件即可改进姿态估计结果。该工具具有灵活性和易于集成的特点,适用于各种姿态估计方法,应用前景广阔。

TF-SimpleHumanPose - 2D多人体姿态估计和追踪的简易基线方法
GithubMS COCOTensorFlow姿态估计开源项目简单基线跟踪
该项目是利用TensorFlow实现的2D多人体姿态估计与追踪代码库,兼容多个数据集如MPII、PoseTrack 2018和MS COCO 2017。其代码简洁灵活,提供训练、测试和可视化功能,并生成与MS COCO和PoseTrack兼容的输出文件。在CUDA和cuDNN环境的Ubuntu系统上进行多GPU训练和测试。
Realtime_Multi-Person_Pose_Estimation - 实时多人人体姿态估计的开源实现
CVPRGithubMSCOCO Keypoints ChallengeOpenPosePart Affinity FieldsRealtime Multi-Person Pose Estimation开源项目
该项目展示了一种无需人体检测器的实时多人人体姿态估计方法,曾获2016年MSCOCO关键点挑战赛冠军等多个奖项。项目提供了C++、TensorFlow、Pytorch等多种实现版本,适用于不同应用场景。页面还包括详细的测试与训练步骤,以及相关的代码库和资源链接,适合研究人员和开发者使用。
FoundationPose - 创新性6D物体姿态估计与跟踪的统一框架
6D物体姿态估计FoundationPoseGithub开源项目机器人应用物体跟踪计算机视觉
FoundationPose是一个统一的6D物体姿态估计和跟踪框架,支持基于模型和无模型两种方式。该框架无需微调即可应用于新物体,通过大规模合成训练、大型语言模型辅助和创新架构实现强大泛化能力。在多个公共数据集的评估中,FoundationPose在challenging场景下显著优于现有方法,即使减少假设也能达到与实例级方法相当的效果。
PoseFlow - 高效实时人体姿态追踪算法
GithubPoseFlow人体姿态跟踪多人姿态估计开源项目深度学习计算机视觉
PoseFlow是GitHub上的开源人体姿态追踪项目,在实时多人追踪方面表现出色。它在PoseTrack挑战赛中achieve了高精度,支持各种数据集和可视化。该算法结合了深度学习和计算机视觉技术,适用于动作识别、行为分析等AI应用。PoseFlow提供Python实现,易于集成到现有系统中。它集成了AlphaPose和DeepMatching/ORB特征匹配技术,实现了高效准确的追踪。该项目提供完整代码和使用文档,可应用于计算机视觉、动作分析等领域。
OnePose_Plus_Plus - 关键点自由的单次目标姿态估计方法
3D重建GithubOnePose++开源项目物体姿态估计神经网络计算机视觉
OnePose++是一种目标姿态估计方法,无需CAD模型和预定义关键点。该方法通过结构光重建和深度学习,实现单次拍摄即可估计物体姿态。项目提供训练、推理和演示代码,支持OnePose和OnePose_LowTexture数据集,可扩展至LINEMOD数据集。OnePose++在计算机视觉和机器人领域有潜在应用价值。
openpose - 实时检测人体、手部、面部和足部的多人人体关键点
CMU Panoptic StudioGithubOpenPose三维重建人体姿态识别实时多人人体关键点检测开源项目
OpenPose是首个实现实时多人人体、手部、面部和足部关键点检测的系统,能够在单张图像上检测135个关键点。其功能包括2D和3D姿态估计、支持Unity插件和多种输入输出方式,兼容多个操作系统和硬件配置,适用于研究和开发项目。
mmpose - 先进的开源姿态估计工具箱
GithubMMPoseOpenMMLabPyTorch姿态估计开源项目计算机视觉
MMPose是基于PyTorch的开源姿态估计工具箱,支持2D多人人体姿态估计、手部姿态估计等多种主流任务。该工具箱实现了多个先进的深度学习模型,在训练速度和准确性方面表现出色。MMPose支持COCO、MPII等多个数据集,提供详细文档和API参考。其模块化设计便于用户构建自定义的姿态估计框架,适用于相关研究与应用开发。
litepose - 高效实时多人姿态估计的单分支架构
GithubLitePose人体姿态估计大核卷积开源项目效率优化边缘设备
LitePose是一种针对边缘设备的高效单分支架构,专用于实时多人姿态估计。通过融合解卷积头和大卷积核,该模型显著提升了性能。在移动平台上,LitePose将延迟降低5倍,同时保持估计精度。项目开源了预训练模型、训练脚本和评估工具,支持COCO和CrowdPose数据集。
V2V-PoseNet_RELEASE - 从单个深度图进行高精度3D手部和人体姿态预测
3D手势估计GithubPyTorchV2V-PoseNet团队SNU CVLAB开源项目深度图
V2V-PoseNet是一种基于单个深度图的高精度3D手部和人体姿态估计方法。该项目由首尔国立大学计算机视觉实验室开发,并在HANDS2017挑战赛中表现出色。其内容包括模型架构、训练代码、数据集说明及预训练模型下载。支持ICVL、NYU、MSRA和ITOP等多个著名数据集,并提供详细的比较和测试结果。仓库还包含可视化代码,方便研究人员进一步应用和测试。
ED-Pose - 革新端到端多人姿态估计框架
ED-PoseGithub多人姿态估计开源项目深度学习目标检测计算机视觉
ED-Pose创新性地将多人姿态估计任务重新定义为两个显式框检测过程,无需后处理和密集热图监督。该框架在COCO数据集上超越同等骨干网络的热图方法1.2 AP,并在CrowdPose数据集上达到76.6 AP的领先水平。ED-Pose还兼容Human-Art数据集,并优化了推理速度。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号