Project Icon

tensorflow-deep-learning

TensorFlow深度学习教程

本项目通过展示如何使用TensorFlow和Keras解决多种问题,教授深度学习的基本技能及其应用。课程内容包括关键视频教程、实践练习和项目实战,确保学习者能通过动手操作全面理解深度学习。适合任何级别的学者,帮助你提升个人和职业技能。

deeplearning-tensorflow2-notebooks - 深度学习实践资源库,基于TensorFlow 2和Keras
GithubKerasTensorFlowreceptive field可视化开源项目深度学习
deeplearning-tensorflow2-notebooks是一个开源的深度学习资源库,基于TensorFlow 2和Keras构建。项目包含多个Jupyter笔记本,涵盖深度学习的基础和高级主题。特色内容包括感受野的计算和可视化,有助于理解深度学习模型的内部机制。这个资源库适合各层次的学习者,提供了实践性的学习材料。项目同时提供波斯语支持,增加了其国际化特性。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
zero-to-mastery-ml - 从零到精通的机器学习全面指南
GithubScikit-LearnTensorFlowZero to Mastery Machine Learning开源项目数据科学机器学习
本教程涵盖了机器学习从基础到高级的完整学习路径。内容包括代码示例、笔记本、图像和其他资料,均可通过Udemy和zerotomastery.io获取。课程内容包括六步机器学习建模框架、数据科学工具、结构化数据项目、神经网络及深度学习。最新的在线课程材料正在开发中,预计2024年发布更新。此外,还提供学生分享的学习笔记,丰富学习资源。
hands-on-ml-zh - Sklearn和TensorFlow机器学习指南
GithubPythonSklearnTensorFlow开源项目数据分析机器学习
本指南详细介绍了如何使用Sklearn和TensorFlow进行机器学习,包括在线阅读、Docker镜像、PYPI包和NPM包的多种下载方式,并提供了完整的编译和安装步骤。通过该指南,读者能够学习和掌握数据分析及机器学习的实用技能。
Production-Level-Deep-Learning - 生产级深度学习系统的部署与优化工程指南
Deep LearningGithubMachine LearningPyTorchTFXTensorFlow开源项目
本项目提供全面的工程指南,指导在实际应用中部署生产级深度学习系统。涵盖数据管理、开发、训练、评估、测试和部署等关键模块,并推荐最佳实践和工具。内容借鉴Full Stack Deep Learning Bootcamp、TFX Workshop和Pipeline.ai的高级KubeFlow Meetup,确保用户应对从模型训练到生产部署的各种挑战。
AndroidTensorFlowMachineLearningExample - Android应用集成TensorFlow的详细教程
AndroidGithubTensorFlow对象检测开源项目机器学习示例项目
此项目提供了在Android应用中集成TensorFlow的详细指南。开发者可以学习如何构建和使用TensorFlow项目及其库文件(.so和.jar文件),通过具体示例了解如何使用TensorFlow进行物体检测,包括处理从相机拍摄的图像。适合希望将机器学习技术应用在移动设备上的开发者。
keras_cv_attention_models - 深度学习模型和使用指南
GithubKeras_cv_attention_modelsPyTorchTensorFlow开源项目模型训练
该项目提供全面的深度学习模型和使用指南,支持Keras和PyTorch后端。涵盖基础操作、模型训练、推理优化等功能,并详细介绍识别、检测、分割和语言模型的使用。还支持ONNX导出和推理性能评估。
awesome-deep-learning - 开源深度学习资源集合,覆盖书籍、课程、视频和研究论文等
Github人工智能大数据开源项目机器学习深度学习神经网络
awesome-deep-learning提供全面的开源深度学习资源集合,覆盖书籍、课程、视频和研究论文等,适合各阶段学习者深入探索。通过更新最新技术和理论,推动知识和技术的不断进步。
machine_learning_examples - 机器学习示例和教程的精选集合
GithubGoogle ColabTensorflow 2.0data_sciencedeep_learning_coursesmachine_learning_examples开源项目
本页面汇集了多种机器学习的实例和教程,涵盖自然语言处理、时间序列分析、金融工程和深度学习等领域。用户可以通过链接访问详细的课程,每个课程的代码都存放在相应的文件夹中,便于查找和学习。特别指出TensorFlow 2.0及以后的代码主要在Google Colab上,建议通过克隆而非分叉仓库来保持代码的最新状态。
Tensorflow-Project-Template - 结合了简单性、文件夹结构的最佳实践和良好的 OOP 设计的简介深度学习项目模板
GithubOOP设计Tensorflow开源项目模板深度学习项目结构
一个设计简洁的深度学习项目模板,结合了简单性、良好的文件夹结构和优秀的OOP设计,帮助开发者更快地启动主要项目,专注于核心部分(如模型和训练)。模板封装了常见功能,使得开发者仅需更改核心内容即可轻松启动新的TensorFlow项目。主要组件包括模型、训练器、数据加载器和日志记录器,提供详细的使用示例和项目架构图。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号