Project Icon

bert-base-uncased-emotion

BERT模型用于情感分析的优化与应用

该项目基于bert-base-uncased模型,并使用PyTorch Lightning技术在一个情感数据集上进行了微调,支持文本分类和情感分析。训练参数包括128的序列长度、2e-5的学习率、32的批处理大小和4个训练周期,运行在两块GPU上。尽管模型尚未最优化,但在实际应用中显示出一定效果,达到了0.931的验证精度。更多项目详情可以通过nlp viewer查看。

torchMoji - 基于表情符号的情感分析深度学习模型
DeepMojiGithubTorchMoji开源项目情感分析深度学习自然语言处理
TorchMoji是PyTorch实现的DeepMoji模型,通过分析12亿条带表情符号的推文来理解语言表达情感的方式。该模型利用迁移学习在多个情感相关的文本建模任务中实现了优秀性能。项目包含预训练模型、数据处理工具和示例代码,方便研究者和开发者将情感分析应用于各种文本理解任务。TorchMoji模型可用于情感分类、情感强度预测和讽刺检测等任务,为自然语言处理研究和应用提供了有力工具。
twitter-xlm-roberta-base-sentiment-multilingual - XLM-RoBERTa模型在多语言推特情感分析中的应用
GithubHuggingfaceXLM-RoBERTasentiment analysistweetnlp多语言开源项目文本分类模型
本项目是基于cardiffnlp/twitter-xlm-roberta-base模型针对多语言推特情感分析进行的微调。模型在cardiffnlp/tweet_sentiment_multilingual数据集上训练,通过tweetnlp库实现。测试结果显示,模型在F1分数和准确率方面均达到约69%的性能。研究人员和开发者可使用简单的Python代码调用此模型,为多语言社交媒体内容分析提供了实用的解决方案。
FinTwitBERT-sentiment - 基于BERT的金融推文情感分析工具
BERT模型FinTwitBERTGithubHuggingface开源项目模型社交媒体分析自然语言处理金融推文情感分析
FinTwitBERT-sentiment基于1000万条金融推文预训练的FinTwitBERT模型开发,通过38,091条人工标注数据和142万条合成数据进行微调,专注于分析社交媒体金融文本的情感倾向。此模型支持通过Hugging Face transformers库集成,适用于金融推文和相关社交媒体内容的情感分析任务。
sentiment-analysis - 多种中文情感分析方法及实现途径
GithubSentiment Analysis开源项目情感分析文本分类深度学习自然语言处理
该页面介绍了中文情感分析的三种类型:基于情感词典、传统机器学习和深度学习的方法,并展示了四种实现方式:词典法、Bayes法、ALBERT与TextCNN结合及其emoji扩展。适合自然语言处理和文本分类爱好者深入了解情感分析的实现手段。
pytorch-sentiment-neuron - Pytorch版本的情感神经元实现情感分析与文本生成
Githubcudamlstm_ns.ptpython 3.5pytorchsentiment开源项目
项目pytorch-sentiment-neuron基于Pytorch,实现了利用情感神经元进行情感分析和文本生成。用户可以通过预设模型文件和简单的命令行操作生成文本并进行情感分析,lm.py文件还允许在新数据上重新训练模型。该项目依赖Pytorch、Cuda和Python 3.5,适用于自然语言处理和情感分析领域的研究人员和开发者。
bert-finetuned-japanese-sentiment - 日语电商评论情感分析BERT微调模型
BERTGithubHuggingface开源项目情感分析日语处理机器学习模型自然语言处理
该模型基于cl-tohoku/bert-base-japanese-v2微调,使用20,000条亚马逊日语评论进行训练。经过6轮训练后,模型能够将文本准确分类为正面、中性或负面情感,验证集准确率达81.32%。此模型主要适用于日语电商评论等领域的情感分析任务。
roberta-base-finetuned-dianping-chinese - 中文RoBERTa模型用于多领域文本情感和主题分类
GithubHuggingfaceRoBERTaTencentPretrainUER-py开源项目文本分类模型模型微调
该项目包含利用UER-py和TencentPretrain微调的中文RoBERTa-Base模型,用于用户评论和新闻数据的情感及主题分类。模型可通过HuggingFace获取,适用于多种文本分类任务,具备高度的分类精准度。
bert-fa-base-uncased-sentiment-deepsentipers-binary - 波斯语情感分析优化:ParsBERT v2.0项目
DeepSentiPersDigikalaGithubHuggingfaceParsBERTSnappFood开源项目情感分析模型
该项目专注于ParsBERT v2.0在波斯语情感分析中的表现,通过更新词汇表和微调训练数据集,如Digikala、SnappFood和DeepSentiPers,实现文本情感的多类别及二元分类测试,其中去除了中性类别。ParsBERT v2在测试中展现出优秀的性能,为研究人员提供了有效的工具。用户可访问相关链接下载数据集,并通过文档获取更详细的使用说明和项目动态。
bert-toxic-comment-classification - BERT模型在毒性评论分类中的应用与实现
BERTGithubHuggingface开源项目文本分类机器学习模型模型训练毒性评论分类
该项目基于BERT模型,通过fine-tuning实现毒性评论的智能分类。模型在1500行测试数据上达到0.95 AUC,采用Kaggle竞赛数据集训练。项目提供简洁的Python接口,便于开发者快速集成文本毒性检测功能。适用于构建在线社区、内容平台的评论审核系统。
finbert - 针对金融领域的BERT情感分析预训练模型
BERTFinBERTGithubHuggingfaceProsus开源项目模型自然语言处理金融情感分析
FinBERT是一个针对金融文本情感分析的预训练NLP模型。该模型基于BERT架构,通过在大规模金融语料库上进行训练和微调,专门用于金融领域的情感分类。FinBERT能够为文本输出正面、负面或中性三种情感标签的概率分布,旨在提升金融文本分析的准确性,为投资决策和市场分析提供客观依据。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号