Project Icon

bert-base-uncased-emotion

BERT模型用于情感分析的优化与应用

该项目基于bert-base-uncased模型,并使用PyTorch Lightning技术在一个情感数据集上进行了微调,支持文本分类和情感分析。训练参数包括128的序列长度、2e-5的学习率、32的批处理大小和4个训练周期,运行在两块GPU上。尽管模型尚未最优化,但在实际应用中显示出一定效果,达到了0.931的验证精度。更多项目详情可以通过nlp viewer查看。

prediksi-emosi-indobert - IndoBERT模型应用于印尼语文本情绪预测的工具
GithubHuggingfaceIndoBERTPrediksi Emosi App开源项目情感分析模型模型预测预训练模型
Prediksi Emosi App 利用预训练的IndoBERT模型进行印尼语情绪分析。应用程序接受用户输入的句子或段落,预测其可能的情绪,如愤怒、悲伤、快乐、爱、恐惧和厌恶,并以百分比格式展示结果,让用户轻松理解文本的情绪特征,便于分析和交互。
bert-base-uncased-ag-news - 基于BERT的文本序列分类模型
GithubHuggingfaceTextAttackag_news数据集bert-base-uncased序列分类开源项目模型精度
bert-base-uncased模型通过TextAttack和ag_news数据集进行微调,专为文本序列分类任务优化。经过5轮训练并采用交叉熵损失函数,该模型在第3轮时达到了0.951的高准确率。该模型设置批量大小为16,学习率为3e-05,最大序列长度为128,适用于高效准确的文本分类任务。了解更多信息请访问TextAttack的Github页面。
Cemotion - 高效中文情感分析和分词工具库
BERTCemotionGithub中文NLP中文分词开源项目情感分析
Cemotion是一个Python中文NLP库,主要用于情感分析和通用领域分词。该库采用BERT模型训练,可为中文文本提供情感倾向置信度。新增的Cegementor类使用BAStructBERT模型进行语义分词。Cemotion支持批量处理和多平台部署,可自动调用GPU加速。2.0版本在性能和准确度方面有所提升。
autonlp-Tweet-Sentiment-Extraction-20114061 - AutoNLP推文情感分析模型达80%准确率
AutoNLPGithubHuggingface开源项目情感分析机器学习模型模型训练自然语言处理
这是一个基于AutoNLP训练的多类别分类模型,主要应用于推文情感提取分析。模型在验证集上的准确率为80.36%,F1分数为0.807。开发者可通过cURL或Python API调用该模型进行推文情感分析,适用于社交媒体数据分析和用户反馈处理等场景。
twitter-roberta-base-sentiment-latest - RoBERTa基础的推特情感分析模型 支持英文社交媒体文本
GithubHuggingfaceRoBERTaTweetEvalTwitter开源项目情感分析模型自然语言处理
这是一个基于RoBERTa-base的推特情感分析模型,通过1.24亿条推文训练并针对情感分析任务微调。模型可将英文推文分类为积极、中性或消极,支持Transformers库集成。适用于社交媒体分析和舆情监测等场景,是TweetNLP项目的组成部分,体现了社交媒体自然语言处理的最新进展。
robertuito-emotion-analysis - RoBERTuito驱动的西班牙语情感分析模型
GithubHuggingfaceRoBERTuitoTwitter开源项目情感分析模型自然语言处理西班牙语
robertuito-emotion-analysis项目提供了一个基于RoBERTuito的西班牙语情感分析模型。该模型能够识别6种基本情绪和中性情绪,在情感分析、仇恨言论检测和讽刺识别等任务中表现出色。模型使用TASS 2020 Task 2语料库训练,为处理西班牙语社交媒体文本提供了有效工具。研究人员可以通过Hugging Face模型库轻松访问和使用这一资源。
pytorch-sentiment-analysis - 使用PyTorch进行电影评论情感分析的教程
GithubPyTorchPython 3.9开源项目情感分析教程神经网络
该开源项目提供了一系列教程,使用PyTorch实现序列分类模型,主要用于从电影评论中预测情感。课程内容包括神经词包模型、递归神经网络(RNN)、卷积神经网络(CNN)和Transformer模型的理论与实践。此外,还讲解了如何使用torchtext库简化数据加载和预处理。如果有任何疑问或反馈,可以随时通过提交问题进行交流。
SocialBERT-social - ESG领域社会文本分类的优化语言模型
ESGGithubHuggingfaceSocialBERT人工智能开源项目模型社会文本分类自然语言处理
SocialBERT-social是专注于ESG领域社会文本分类的高效语言模型。通过在SocialBERT-base基础上利用2k社会数据集进行微调,该模型大幅提升了社会文本识别精度。它与Hugging Face pipeline无缝集成,适用于复杂的ESG分析和风险评估任务。项目还提供了详尽的使用指南和相关论文,为研究者和实践者提供了全面的支持。
DeepMoji - 情感分析模型,基于12亿推文训练,支持迁移学习与多情感预测
DeepMojiGithubKerastorchMoji开源项目情感分析机器学习
DeepMoji是一个情感分析模型,基于12亿推文数据训练,可通过迁移学习在多种情感任务中表现出色。项目包含代码示例和预训练模型,兼容Python 2.7和Keras框架,适用于情感预测和文本编码。还提供了PyTorch实现,用户可使用不同模块进行数据处理、模型微调和测试。
dl-for-emo-tts - 通过深度学习实现情感语音合成
GithubTacotron优化器开源项目情感语音合成数据集深度学习
项目通过深度学习实现情感语音合成,包括Tacotron和DCTTS模型的应用。详细介绍了使用的数据集、相关文献和多种模型微调策略,如调整学习率和冻结网络层。尽管面临情感数据集有限的问题,但实验验证了改进方案对低资源情感TTS传递学习的有效性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号