Project Icon

pipeline-as-repo

项目目标与方法:优化问答系统的性能

该项目旨在通过问答挑战赛提升问答系统的回答准确性,参与者将开发和提交模型,目标是依据模型准确性获得高排名。项目内容包括评估模型、编写对抗性问题,以及提交符合要求的系统。项目推行过程中还包含进度报告、时间线调整及任务分配的更新。

TriviaAnsweringMachineREAL - 开发智能问答求解平台以应对学术问答挑战
GithubHuggingfaceQuiz bowl多样性开源项目模型竞赛问答系统问题写作
本项目旨在开发一个AI问答系统,通过解决学术竞赛中的问题来迎接挑战。参与者可以提交模型进行对比,并开发具有难度的对抗性问题,覆盖领域包括艺术、文学和科学。项目鼓励使用外部数据和软件,并在Dynabench平台进行模型评估,推动数据资源共享。除了取得排行榜领先以外,项目还包括撰写多领域的对抗性问题,测试现代NLP系统的局限性,同时保证问题的事实准确性和多样性,以便评估人类与计算机的解题准确性差距。
primeqa - PrimeQA:多语言问答系统的开源研究和开发平台
GithubPrimeQA信息检索多语言问答开源项目机器阅读理解问题生成
PrimeQA是一个开源平台,帮助研究人员和开发人员训练先进的问答模型。用户可以在PrimeQA上复制NLP会议中的实验,下载预训练模型并应用于自定义数据。该平台支持信息检索、多语言阅读理解、问题生成及检索增强的生成技术。PrimeQA在多个排行榜中名列前茅,整合Transformers工具包以提供强大的问答功能,满足领先的研究和开发需求。
xlm-roberta-large-squad2 - XLM-RoBERTa大型模型在多语言环境中的高效问答表现
GithubHaystackHuggingfacexlm-roberta-large多语种开源项目机器学习模型问答
XLM-RoBERTa大型模型经过SQuAD 2.0训练,支持多语言提取式问答。结合Haystack和Transformers框架,适用于大规模文档问答。模型评估显示其精准度和F1分数较高,尤其在无答案场景中表现突出,且支持FARM和Transformers间灵活切换。
T5-Base-finetuned-for-Question-Generation - SQuAD数据集上T5模型的问答生成能力提升研究
GithubHuggingfaceSQuADT5Transformers开源项目模型问题生成预训练模型
本项目在SQuAD数据集上对T5模型进行微调,专注于问答生成功能的提升。利用PyTorch和Transformers库,该模型可基于指定的答案和上下文生成相关问题,显著提高了问答系统的自动化水平,适用于文本、视觉和音频等多模态任务。
bert-large-finetuned-squad2 - BERT大规模问答模型的SQuAD2.0优化实现
BERTGithubHuggingfaceSQuAD2.0开源项目机器学习模型自然语言处理问答系统
bert-large-finetuned-squad2基于BERT大规模模型架构,通过SQuAD2.0数据集微调优化,实现了79.7%的F1评分。该模型支持transformers库快速部署,可识别问题是否有答案并提供准确回答。模型采用384序列长度和优化学习参数,在问答任务中展现稳定性能。
Llama3-ChatQA-1.5-8B - 强化对话问答和检索增强生成的高性能AI模型
GithubHuggingfaceLlama3-ChatQA-1.5人工智能开源项目检索增强生成模型自然语言处理问答系统
基于Llama-3开发的大语言模型,专注于优化对话式问答和检索增强生成能力。模型提供8B和70B两个版本,采用改进的训练方案,增强了表格理解和算术计算能力。在ChatRAG Bench评测中,模型在多个数据集上表现优异,尤其擅长处理上下文对话和文档检索。支持完整文档输入和分块检索两种使用方式,适用于多种对话问答场景。
tinyroberta-squad2 - 经过蒸馏优化的快速问答模型,运行速度提升一倍
GithubHuggingfacetinyroberta-squad2开源项目数据提取机器学习模型语言模型问答系统
tinyroberta-squad2是一个基于SQuAD 2.0数据集训练的轻量级问答模型。通过知识蒸馏技术,模型在保持原有精确匹配率78.86%和F1分数82.04%的同时,将运行速度提升一倍。模型支持Haystack和Transformers框架,可用于构建文本问答系统。
LLM-Training-Puzzles - 大型语言模型训练中的内存效率与计算管道优化
AIGPUGithubLLM Training Puzzles内存效率开源项目计算流水线
本项目包含8个在多GPU环境下训练大型语言模型的挑战性谜题,旨在通过实践掌握内存效率和计算管道优化的关键训练原理。尽管大多数人没有机会在成千上万台计算机上进行训练,这些技能对现代AI的发展至关重要。推荐使用Colab运行这些谜题,提供便捷的上手体验。
t5-base-finetuned-question-generation-ap - T5微调模型用于高效问题生成
GithubHuggingfaceSQuADT5开源项目模型自然语言处理迁移学习问题生成
T5-base模型在SQuAD数据集上进行微调,通过整合答案和上下文实现问题生成。项目依托Hugging Face的Transformers库,在Google的支持下,利用迁移学习提升自然语言处理的精确度。支持大规模无标签数据集加载及优化训练脚本,以改善问答生成性能。
roberta-base-squad2 - 使用SQuAD 2.0数据集微调的RoBERTa英文抽取式问答模型
GithubHaystackHuggingfaceRoBERTaSQuAD开源项目模型自然语言处理问答系统
roberta-base-squad2是一个基于RoBERTa模型,在SQuAD 2.0数据集上微调的英文抽取式问答模型。它在SQuAD 2.0验证集上达到79.87%的精确匹配率和82.91%的F1分数。此模型能处理包括无答案问题在内的多种问答任务,适合构建高效问答系统。开发者可通过Haystack或Transformers库便捷地集成该模型进行问答应用开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号