Project Icon

pipeline-as-repo

项目目标与方法:优化问答系统的性能

该项目旨在通过问答挑战赛提升问答系统的回答准确性,参与者将开发和提交模型,目标是依据模型准确性获得高排名。项目内容包括评估模型、编写对抗性问题,以及提交符合要求的系统。项目推行过程中还包含进度报告、时间线调整及任务分配的更新。

QueryHub - 整合AI技术的学术交流与资源共享平台
AI助手AI工具QueryHub学术问答平台智能搜索社区协作
QueryHub结合学术问答社区和AI技术,打造互动学习平台。提供论坛交流、AI辅助和PDF智能对话等功能,支持全天候学术咨询。智能搜索帮助用户快速定位资料。平台旨在提升学习效率,加速知识传播,推动学术社群协作。
minilm-uncased-squad2 - MiniLM抽取式问答模型在SQuAD 2.0数据集实现76分精确匹配
GithubHaystackHuggingfaceMiniLMSQuAD 2.0Transformers开源项目模型问答模型
MiniLM-L12-H384-uncased是一款专注于英文抽取式问答的开源模型。经SQuAD 2.0数据集训练后,模型可从文本中精确定位答案信息,并通过Haystack或Transformers框架便捷部署。目前在验证集评测中展现出优秀的问答性能,适合搭建生产环境的问答应用。
FastGPT - 基于大语言模型的问答系统与工作流编排平台
FastGPTGithub在线使用大语言模型工作流编排开源项目热门知识库问答系统
FastGPT是一个先进的问答系统,基于LLM大语言模型,提供开箱即用的数据处理和模型调用能力。它支持可视化工作流编排,适用于复杂的问答场景。同时,FastGPT支持快速部署,具有强大的知识库能力和多模型支持,是企业和开发者的理想选择。
deberta-v3-large-squad2 - DeBERTa V3大规模模型设计,问答任务表现卓越
GithubHaystackHuggingfaceSQuAD 2.0deberta-v3-large开源项目提取式问答模型问答
该DeBERTa模型基于SQuAD2.0数据集进行了微调,专注于提取式问答任务。通过Haystack和Transformers框架的整合,模型在检索和匹配性能上表现优异,经多种数据集验证显示出高准确性。
sapbert-from-pubmedbert-squad2 - 针对问答系统的超参数微调提升模型性能
GithubHuggingfaceQuestion Answeringsapbert-from-pubmedbert-squad2开源项目数据集模型训练
项目在squad_v2数据集上微调了SapBERT-from-PubMedBERT,以提升问答任务性能。采用学习率为2e-05的Adam优化器和线性LR调度器,并通过5个训练周期实现模型收敛,最终验证集损失为1.2582。
bert-large-cased-whole-word-masking-finetuned-squad - 全词掩码BERT大型模型在SQuAD数据集上优化的问答系统
BERTGithubHuggingface开源项目微调模型自然语言处理问答系统预训练模型
BERT-large-cased-whole-word-masking-finetuned-squad是一个基于全词掩码技术的大型语言模型。该模型包含24层、1024维隐藏层和16个注意力头,共3.36亿参数。在BookCorpus和Wikipedia数据集预训练后,模型在SQuAD数据集上进行了微调,专门用于问答任务。采用双向Transformer架构,通过掩码语言建模和下一句预测任务训练,能有效理解文本语义并回答上下文相关问题。
reward-model-deberta-v3-large-v2 - 人类反馈训练奖励模型 提升问答评估和强化学习效果
DeBERTaGithubHuggingfaceRLHF人工智能奖励模型开源项目模型语言模型
这个开源项目开发了一种基于人类反馈的奖励模型(RM),能够评估给定问题的答案质量。该模型在多个数据集上进行训练,可应用于问答系统评估、强化学习人类反馈(RLHF)奖励计算,以及有害内容检测等场景。项目提供了详细的使用说明、性能对比和代码示例。其中,DeBERTa-v3-large-v2版本在多项基准测试中展现出优异性能。
BIG-bench - 评估大型语言模型能力的开放基准
BIG-benchGithub任务创建基准测试开源项目模型评估语言模型
BIG-bench是一个开放的基准测试项目,致力于评估大型语言模型的能力并预测其未来发展。该项目包含200多个多样化任务,涉及算术、推理等多个领域。研究人员可通过JSON或编程方式贡献新任务,并利用公开模型进行评估。BIG-bench Lite作为24个精选任务的子集,提供了高效的模型性能评估方法。这一平台为深入研究语言模型能力提供了宝贵资源。
whisper-tiny-quiztest - 微型语音识别模型为Quiz测试场景提供精准解决方案
GithubHuggingfaceWhisper Tiny开源项目数据集机器学习模型模型微调语音识别
Whisper Tiny Quiztest是一款基于openai/whisper-tiny模型优化的自动语音识别(ASR)系统,专注于提升quiz测试场景的识别效果。通过在quiztest数据集上的训练,该模型在评估集上实现了55.05%的词错误率(WER)。采用Adam优化器和余弦退火学习率策略,经过1000步训练后,模型性能得到显著提升。作为一个轻量级解决方案,Whisper Tiny Quiztest为Quiz应用提供了高效的语音识别支持。
electra_large_discriminator_squad2_512 - ELECTRA大型判别器模型在SQuAD2.0数据集上的问答系统微调
ELECTRAGithubHuggingface开源项目机器学习模型模型微调自然语言处理问答系统
electra_large_discriminator_squad2_512是基于ELECTRA大型判别器模型在SQuAD2.0数据集上微调的问答系统。该模型在精确匹配和F1分数上分别达到87.10%和89.98%。它使用PyTorch和Transformers库实现,最大序列长度为512,经3轮训练后展现出优秀的问答性能。该项目还提供了详细的训练脚本和系统环境信息,便于其他研究者复现和改进。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号