Project Icon

rag

高效检索增强生成系统RAG实现

RAG with txtai项目实现了一个基于Streamlit的检索增强生成应用。系统集成了向量RAG和图RAG两种方法,通过控制语言模型的上下文来增强回答的准确性。项目支持Docker容器和Python虚拟环境部署,可灵活添加自定义数据并通过环境变量配置模型参数。这一versatile的RAG系统适用于广泛的知识检索和智能问答应用场景。

renumics-rag - 使用Renumics RAG进行检索增强生成数据的探索和可视化
GithubLangChainOpenAIPoetryRenumics RAGStreamlit开源项目
Renumics RAG项目使用LangChain和Streamlit实现检索增强生成助手。通过简单的虚拟环境配置,支持GPU和CPU用户可以快速安装相关依赖项。提供对HTML文件的文档索引和通过命令行或Web应用进行文档检索和问题解答的功能。支持OpenAI、Hugging Face模型的集成,并能使用Renumics Spotlight进行数据的交互式探索,帮助用户了解RAG系统的性能与数据分布。
rags - 使用自然语言从数据源创建RAG管道
GithubOpenAIRAGsStreamlit开源项目数据管道自然语言处理
RAGs是一个基于Streamlit的应用程序,使用自然语言从数据源创建RAG管道。用户可以描述任务和参数,查看和修改生成的参数,并通过RAG代理查询数据。项目支持多种LLM和嵌入模型,默认使用OpenAI构建代理。该应用程序提供了一个标准的聊天界面,能够通过Top-K向量搜索或总结功能满足查询需求。了解更多关于安装和配置的信息,请访问GitHub页面或加入Discord社区。
rag-stack - 基于RAG技术的企业级智能问答平台
GithubRAGstack企业知识库向量数据库开源LLM开源项目检索增强生成
RAGstack是一个基于检索增强生成(RAG)技术的企业级智能问答平台。该项目支持Llama 2、Falcon和GPT4All等开源大语言模型,利用Qdrant向量数据库实现高效文档检索。RAGstack提供简洁的服务器和用户界面,支持PDF文档上传和智能问答。系统可在本地运行,也可轻松部署到各大主流云平台,为企业提供安全可控的私有化知识问答解决方案。
RAG - 优化检索增强生成技术的最佳实践探索
GithubRAGGA开源项目最佳实践检索增强生成深度学习论文实现
RAGGA是一个实现检索增强生成(RAG)技术最佳实践的开源项目。基于论文研究,项目提供RAG系统性能优化方法和策略,包含代码实现和复现指南。RAGGA通过实验验证了多种RAG技术优化策略,包括检索方法改进、上下文融合等。这些发现对于提升自然语言处理任务的性能具有重要意义,为RAG技术研究和应用提供了重要参考资源。
Easy-RAG - 构建高效RAG系统 集成多功能知识库和先进对话能力
Easy-RAGGithub向量数据库大模型聊天开源项目知识图谱知识库
Easy-RAG是一个功能全面的检索增强生成(RAG)系统,支持多种文件格式的知识库管理。系统整合了Chroma、FAISS等向量数据库,并采用rerank技术提高信息检索效率。它具备纯大模型多轮对话和基于知识库的问答能力,适合学习、使用和自主扩展。Easy-RAG还支持音频视频的语音转文本功能,为构建智能对话系统提供了全面的解决方案。
RAG_Techniques - 先进RAG技术集合优化检索增强生成系统
GithubRAG信息检索开源项目机器学习检索增强生成自然语言处理
本项目汇集22种先进RAG技术,涵盖简单RAG到复杂可控代理等多种方法,包括上下文丰富、多方面过滤、融合检索和智能重排序等。这些技术旨在提高检索增强生成系统的准确性、效率和上下文丰富度,为研究人员和实践者提供全面实施指南,助力开发更高效RAG系统。
RAGxplorer - 视觉化检索增强生成(RAG)工具的开创者
GithubRAGxplorerRetrieval Augmented GenerationStreamlit使用安装开源项目
RAGxplorer是开源工具,旨在为检索增强生成(RAG)技术提供直观的视觉化展示。该工具支持PDF文档的分析和查询,提供包括Jupyter和Colab在内的多种教程,适用于数据呈现与分析。
Advanced_RAG - 深入探索RAG和Langchain框架在语言理解中的应用
Advanced_RAGGithubLLMsLangchainMulti Query RetrieverSelf-Reflection-RAG开源项目
该项目通过Python笔记本展示了RAG的高级技术,旨在优化大型语言模型(LLMs)的知识丰富度和上下文感知能力。从基础流程到多查询检索、自我反思、和自适应代理等高级架构,全面覆盖了核心组件及其工作方式。项目提供了构建RAG应用的详细指南,展示了如何通过Langchain框架提升文本生成的准确性和信息丰富度。内容包括查询转换、数据源路由和向量数据库索引等关键技术,为LLM应用提供坚实支持。
rag-demystified - 探讨检索增强生成(RAG)管道的内部机制,揭示其技巧、局限性和成本
EvaDBGithubHaystackLLMsLlamaIndexRAG pipelines开源项目
本项目深入探讨了检索增强生成(RAG)管道的内部机制,揭示其技巧、局限性和成本。通过LlamaIndex和Haystack框架,了解如何构建和优化RAG管道,并解决透明度和错误问题。详细分析了子问题查询引擎的工作原理,帮助用户理解复杂的RAG管道的关键组成部分和面临的挑战。
ragapp - 简单配置的企业级Agentic RAG方案
DockerGithubLlamaIndexOpenAIRAGapp云基础设施开源项目
RAGapp是一款企业级Agentic RAG解决方案,配置简单如OpenAI的自定义GPT,可通过Docker部署在云基础设施中。基于LlamaIndex构建,支持OpenAI和Gemini托管AI模型以及本地Ollama模型。提供Docker Compose和即将推出的Kubernetes部署选项。访问Admin UI进行配置,详情请参阅各端点和安全信息。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号